skip to main content


Search for: All records

Creators/Authors contains: "Li, Funing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This work evaluates how well Coupled Model Intercomparison Project 6 models reproduce the climatology of North American severe convective storm (SCS) environments in ERA5 reanalysis and examines what drives biases across models. Biases in spring SCS environments vary widely in magnitude and spatial pattern, though most models do well in reproducing the climatological pattern and a few (MPI and CNRM) also reproduce the overall magnitude. SCS biases are driven by biases in extreme convective available potential energy. These biases are ultimately found to be driven by biases in mean‐state near‐surface moist static energy, indicating that the SCS environments depend strongly on the near‐surface mean state. Results are similar for fall, but not summer or winter when free‐tropospheric biases are also important. Biases differ strongly across parent models but weakly across child models of the same parent. These outcomes help identify models well‐suited for studying climate effects on SCS environments.

     
    more » « less
  2. null (Ed.)
    Abstract Severe local storm (SLS) activity is known to occur within specific thermodynamic and kinematic environments. These environments are commonly associated with key synoptic-scale features—including southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones—that link the large-scale climate to SLS environments. This work analyzes spatiotemporal distributions of both extreme values of SLS environmental parameters and synoptic-scale features in the ERA5 reanalysis and in the Community Atmosphere Model, version 6 (CAM6), historical simulation during 1980–2014 over North America. Compared to radiosondes, ERA5 successfully reproduces SLS environments, with strong spatiotemporal correlations and low biases, especially over the Great Plains. Both ERA5 and CAM6 reproduce the climatology of SLS environments over the central United States as well as its strong seasonal and diurnal cycles. ERA5 and CAM6 also reproduce the climatological occurrence of the synoptic-scale features, with the distribution pattern similar to that of SLS environments. Compared to ERA5, CAM6 exhibits a high bias in convective available potential energy over the eastern United States primarily due to a high bias in surface moisture and, to a lesser extent, storm-relative helicity due to enhanced low-level winds. Composite analysis indicates consistent synoptic anomaly patterns favorable for significant SLS environments over much of the eastern half of the United States in both ERA5 and CAM6, though the pattern differs for the southeastern United States. Overall, our results indicate that both ERA5 and CAM6 are capable of reproducing SLS environments as well as the synoptic-scale features and transient events that generate them. 
    more » « less
  3. Abstract The prevailing conceptual model for the production of severe local storm (SLS) environments over North America asserts that upstream elevated terrain and the Gulf of Mexico are both essential to their formation. This work tests this hypothesis using two prescribed-ocean climate model experiments with North American topography removed or the Gulf of Mexico converted to land and analyzes how SLS environments and associated synoptic-scale drivers (southerly Great Plains low-level jets, drylines, elevated mixed layers, and extratropical cyclones) change relative to a control historical run. Overall, SLS environments depend strongly on upstream elevated terrain but more weakly on the Gulf of Mexico. Removing elevated terrain substantially reduces SLS environments especially over the continental interior due to broad reductions in both thermodynamic instability and vertical wind shear, leaving a more zonally uniform residual distribution that is maximized near the Gulf coast and decays toward the continental interior. This response is associated with a strong reduction in synoptic-scale drivers and a cooler and drier mean-state atmosphere. Replacing the Gulf of Mexico with land modestly reduces SLS environments over the Great Plains (driven primarily thermodynamically) and increases them over the eastern United States (driven primarily kinematically), shifting the primary local maximum eastward into Illinois; it also eliminates the secondary, smaller local maximum over southern Texas. This response is associated with modest changes in synoptic-scale drivers and a warmer and drier lower troposphere. These experiments provide insight into the role of elevated terrain and the Gulf of Mexico in modifying the spatial distribution and seasonality of SLS environments. 
    more » « less