skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Gen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Source‐to‐sink transfer of sediment and organic carbon (OC) is regulated by river mobility. Quantifying trends in river mobility is, however, challenging due to diverse planform morphologies (e.g., meandering, braided) and measurement methods. Here, we utilize a remote‐sensing method applicable to all planform morphologies to quantify the mobility timescales of 80 rivers worldwide. Results show that, across the continuum from meandering to braided rivers, there is a systematic reduction in the timescales of channel mobility and—to a lesser extent—floodplain reworking. This leads to a decrease in the efficiency with which braided rivers rework old floodplain material compared to their meandering counterparts. Reduced floodplain reworking efficiency of braided rivers leads to smaller channel‐belt areas relative to their size. Results suggest that river‐mobility timescales derived from remote sensing can aid in the characterization of sediment and OC storage and transit times at a global scale. 
    more » « less
    Free, publicly-accessible full text available June 28, 2025
  2. Free, publicly-accessible full text available May 7, 2025
  3. Free, publicly-accessible full text available October 1, 2025
  4. Free, publicly-accessible full text available June 1, 2025
  5. Free, publicly-accessible full text available May 7, 2025
  6. Abstract Permafrost influences 25% of land in the Northern Hemisphere, where it stabilizes the ground beneath communities and infrastructure and sequesters carbon. However, the coevolution of permafrost, river dynamics, and vegetation in Arctic environments remains poorly understood. As rivers meander, they erode the floodplain at cutbanks and build new land through bar deposition, creating sequences of landforms with distinct formation ages. Here we mapped these sequences along the Koyukuk River floodplain, Alaska, analyzing permafrost occurrence, and landform and vegetation types. We used radiocarbon and optically stimulated luminescence (OSL) dating to develop a floodplain age map. Deposit ages ranged from modern to 10 ka, with more younger deposits near the modern channel. Permafrost rapidly reached 50% areal extent in all deposits older than 200 years then gradually increased up to ∼85% extent for deposits greater than 4 Kyr old. Permafrost extent correlated with increases in black spruce and wetland abundance, as well as increases in permafrost extent within wetland, and shrub and scrub vegetation classes. We developed an inverse model to constrain permafrost formation rate as a function of air temperature. Permafrost extent initially increased by ∼25% per century, in pace with vegetation succession, before decelerating to <10% per millennia as insulating overbank mud and moss slowly accumulated. Modern permafrost extent on the Koyukuk floodplain therefore reflects a dynamic balance between widespread, time‐varying permafrost formation and rapid, localized degradation due to cutbank erosion that might trigger a rapid loss of permafrost with climatic warming. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025