A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While a number of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is only guaranteed in a “large-sample” regime, imposing enormous burn-in cost in order for their algorithms to operate optimally. How to achieve minimax-optimal regret without incurring any burn-in cost has been an open problem in RL theory. We settle this problem for finite-horizon inhomogeneous Markov decision processes. Specifically, we prove that a modified version ofMVP(Monotonic Value Propagation), an optimistic model-based algorithm proposed by Zhang et al. [82], achieves a regret on the order of (modulo log factors)\begin{equation*} \min \big \lbrace \sqrt {SAH^3K}, \,HK \big \rbrace,\end{equation*}whereSis the number of states,Ais the number of actions,His the horizon length, andKis the total number of episodes. This regret matches the minimax lower bound for the entire range of sample sizeK≥ 1, essentially eliminating any burn-in requirement. It also translates to a PAC sample complexity (i.e., the number of episodes needed to yield ε-accuracy) of\(\frac{SAH^3}{\varepsilon ^2} \)up to log factor, which is minimax-optimal for the full ε-range. Further, we extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances. The key technical innovation lies in a novel analysis paradigm (based on a new concept called “profiles”) to decouple complicated statistical dependency across the sample trajectories — a long-standing challenge facing the analysis of online RL in the sample-starved regime.
more »
« less
Model-Based Reinforcement Learning for Offline Zero-Sum Markov Games
This paper makes progress toward learning Nash equilibria in two-player, zero-sum Markov games from offline data. Despite a large number of prior works tackling this problem, the state-of-the-art results suffer from the curse of multiple agents in the sense that their sample complexity bounds scale linearly with the total number of joint actions. The current paper proposes a new model-based algorithm, which provably finds an approximate Nash equilibrium with a sample complexity that scales linearly with the total number of individual actions. This work also develops a matching minimax lower bound, demonstrating the minimax optimality of the proposed algorithm for a broad regime of interest. An appealing feature of the result lies in algorithmic simplicity, which reveals the unnecessity of sophisticated variance reduction and sample splitting in achieving sample optimality.
more »
« less
- PAR ID:
- 10593070
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 72
- Issue:
- 6
- ISSN:
- 0030-364X
- Page Range / eLocation ID:
- 2430-2445
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper studies a central issue in modern reinforcement learning, the sample efficiency, and makes progress toward solving an idealistic scenario that assumes access to a generative model or a simulator. Despite a large number of prior works tackling this problem, a complete picture of the trade-offs between sample complexity and statistical accuracy has yet to be determined. In particular, all prior results suffer from a severe sample size barrier in the sense that their claimed statistical guarantees hold only when the sample size exceeds some enormous threshold. The current paper overcomes this barrier and fully settles this problem; more specifically, we establish the minimax optimality of the model-based approach for any given target accuracy level. To the best of our knowledge, this work delivers the first minimax-optimal guarantees that accommodate the entire range of sample sizes (beyond which finding a meaningful policy is information theoretically infeasible).more » « less
-
The problem of two-player zero-sum Markov games has recently attracted increasing interests in theoretical studies of multi-agent reinforcement learning (RL). In particular, for finite-horizon episodic Markov decision processes (MDPs), it has been shown that model-based algorithms can find an ϵ-optimal Nash Equilibrium (NE) with the sample complexity of O(H3SAB/ϵ2), which is optimal in the dependence of the horizon H and the number of states S (where A and B denote the number of actions of the two players, respectively). However, none of the existing model-free algorithms can achieve such an optimality. In this work, we propose a model-free stage-based Q-learning algorithm and show that it achieves the same sample complexity as the best model-based algorithm, and hence for the first time demonstrate that model-free algorithms can enjoy the same optimality in the H dependence as model-based algorithms. The main improvement of the dependency on H arises by leveraging the popular variance reduction technique based on the reference-advantage decomposition previously used only for single-agent RL. However, such a technique relies on a critical monotonicity property of the value function, which does not hold in Markov games due to the update of the policy via the coarse correlated equilibrium (CCE) oracle. Thus, to extend such a technique to Markov games, our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions whose value difference is the smallest in the history in order to achieve the desired improvement in the sample efficiency.more » « less
-
Abstract Achieving sample efficiency in online episodic reinforcement learning (RL) requires optimally balancing exploration and exploitation. When it comes to a finite-horizon episodic Markov decision process with $$S$$ states, $$A$$ actions and horizon length $$H$$, substantial progress has been achieved toward characterizing the minimax-optimal regret, which scales on the order of $$\sqrt{H^2SAT}$$ (modulo log factors) with $$T$$ the total number of samples. While several competing solution paradigms have been proposed to minimize regret, they are either memory-inefficient, or fall short of optimality unless the sample size exceeds an enormous threshold (e.g. $$S^6A^4 \,\mathrm{poly}(H)$$ for existing model-free methods). To overcome such a large sample size barrier to efficient RL, we design a novel model-free algorithm, with space complexity $O(SAH)$, that achieves near-optimal regret as soon as the sample size exceeds the order of $$SA\,\mathrm{poly}(H)$$. In terms of this sample size requirement (also referred to the initial burn-in cost), our method improves—by at least a factor of $S^5A^3$—upon any prior memory-efficient algorithm that is asymptotically regret-optimal. Leveraging the recently introduced variance reduction strategy (also called reference-advantage decomposition), the proposed algorithm employs an early-settled reference update rule, with the aid of two Q-learning sequences with upper and lower confidence bounds. The design principle of our early-settled variance reduction method might be of independent interest to other RL settings that involve intricate exploration–exploitation trade-offs.more » « less
-
We introduce the E$^4$ algorithm for the batched linear bandit problem, incorporating an Explore-Estimate-Eliminate-Exploit framework. With a proper choice of exploration rate, we prove E$^4$ achieves the finite-time minimax optimal regret with only $$O(\log\log T)$$ batches, and the asymptotically optimal regret with only $$3$$ batches as $$T\rightarrow\infty$$, where $$T$$ is the time horizon. We further prove a lower bound on the batch complexity of linear contextual bandits showing that any asymptotically optimal algorithm must require at least $$3$$ batches in expectation as $$T\rightarrow\infty$$, which indicates E$^4$ achieves the asymptotic optimality in regret and batch complexity simultaneously. To the best of our knowledge, E$^4$ is the first algorithm for linear bandits that simultaneously achieves the minimax and asymptotic optimality in regret with the corresponding optimal batch complexities. In addition, we show that with another choice of exploration rate E$^4$ achieves an instance-dependent regret bound requiring at most $$O(\log T)$$ batches, and maintains the minimax optimality and asymptotic optimality. We conduct thorough experiments to evaluate our algorithm on randomly generated instances and the challenging \textit{End of Optimism} instances \citep{lattimore2017end} which were shown to be hard to learn for optimism based algorithms. Empirical results show that E$^4$ consistently outperforms baseline algorithms with respect to regret minimization, batch complexity, and computational efficiency.more » « less
An official website of the United States government

