skip to main content


Search for: All records

Creators/Authors contains: "Li, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sodium metal batteries (SMBs) are cost-effective and environmentally sustainable alternative to lithium batteries. However, at present, limitations such as poor compatibility, low coulombic efficiency (CE), and high electrolyte cost hinder their widespread application. Herein, we propose a non-flammable, low-concentration electrolyte composed of 0.3 M NaPF6in propylene carbonate (PC), fluoroethylene carbonate (FEC), and 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE). This low-concentration electrolyte not only reduces cost but also delivers rapid ion diffusion and superior wetting properties. While the Na||FePO4system with this electrolyte demonstrates slightly reduced performance at room temperature compared to standard-concentration formulations (S-PFT), it excels at both high (55 °C) and low (−20 °C) temperatures, showcasing its balanced performance. At 0.5 C (charge)/1 C (discharge), capacity retention reaches 92.8% at room temperature and 98.5% at elevated temperature, with CE values surpassing 99% and 99.63%, respectively, and significant performance sustained at −20 °C at 0.2 C. This electrolyte development thus offers a well-rounded, economically viable path to high-performance SMBs for diverse environmental applications.

     
    more » « less
  2. Abstract

    Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4cluster and the emission of the Cu8(p-MBT)8(PPh3)4cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available October 3, 2025
  4. Free, publicly-accessible full text available July 17, 2025
  5. Free, publicly-accessible full text available May 27, 2025
  6. Free, publicly-accessible full text available May 27, 2025
  7. Colliot, Olivier ; Mitra, Jhimli (Ed.)
    Free, publicly-accessible full text available April 2, 2025
  8. Abstract

    Domain users (DUs) with a knowledge base in specialized fields are frequently excluded from authoring virtual reality (VR)-based applications in corresponding fields. This is largely due to the requirement of VR programming expertise needed to author these applications. To address this concern, we developed VRFromX, a system workflow design to make the virtual content creation process accessible to DUs irrespective of their programming skills and experience. VRFromX provides an in situ process of content creation in VR that (a) allows users to select regions of interest in scanned point clouds or sketch in mid-air using a brush tool to retrieve virtual models and (b) then attach behavioral properties to those objects. Using a welding use case, we performed a usability evaluation of VRFromX with 20 DUs from which 12 were novices in VR programming. Study results indicated positive user ratings for the system features with no significant differences across users with or without VR programming expertise. Based on the qualitative feedback, we also implemented two other use cases to demonstrate potential applications. We envision that the solution can facilitate the adoption of the immersive technology to create meaningful virtual environments.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  9. García-Blanco, Sonia M ; Cheben, Pavel (Ed.)
    Free, publicly-accessible full text available March 12, 2025
  10. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
    Free, publicly-accessible full text available July 2, 2025