skip to main content

Search for: All records

Creators/Authors contains: "Li, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nissim, K. ; Waters, B. (Ed.)
    Recent new constructions of rate-1 OT [Döttling, Garg, Ishai, Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought this primitive under the spotlight and the techniques have led to new feasibility results for private-information retrieval, and homomorphic encryption for branching programs. The receiver communication of this construction consists of a quadratic (in the sender's input size) number of group elements for a single instance of rate-1 OT. Recently [Garg, Hajiabadi, Ostrovsky, TCC 2020] improved the receiver communication to a linear number of group elements for a single string-OT. However, most applications of rate-1 OT require executing it multiple times, resulting inmore »large communication costs for the receiver. In this work, we introduce a new technique for amortizing the cost of multiple rate-1 OTs. Specifically, based on standard pairing assumptions, we obtain a two-message rate-1 OT protocol for which the amortized cost per string-OT is asymptotically reduced to only four group elements. Our results lead to significant communication improvements in PSI and PIR, special cases of SFE for branching programs. - PIR: We obtain a rate-1 PIR scheme with client communication cost of $O(\lambda\cdot\log N)$ group elements for security parameter $\lambda$ and database size $N$. Notably, after a one-time setup (or one PIR instance), any following PIR instance only requires communication cost $O(\log N)$ number of group elements. - PSI with unbalanced inputs: We apply our techniques to private set intersection with unbalanced set sizes (where the receiver has a smaller set) and achieve receiver communication of $O((m+\lambda) \log N)$ group elements where $m, N$ are the sizes of the receiver and sender sets, respectively. Similarly, after a one-time setup (or one PSI instance), any following PSI instance only requires communication cost $O(m \cdot \log N)$ number of group elements. All previous sublinear-communication non-FHE based PSI protocols for the above unbalanced setting were also based on rate-1 OT, but incurred at least $O(\lambda^2 m \log N)$ group elements.« less
    Free, publicly-accessible full text available November 4, 2023
  2. Free, publicly-accessible full text available June 20, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. Free, publicly-accessible full text available March 1, 2023
  5. Free, publicly-accessible full text available March 1, 2023
  6. Free, publicly-accessible full text available February 1, 2023
  7. Systems composed of large ensembles of isolated or interacted dynamic units are prevalent in nature and engineered infrastructures. Linear ensemble systems are inarguably the simplest class of ensemble systems and have attracted intensive attention to control theorists and practionars in the past years. Comprehensive understanding of dynamic properties of such systems yet remains far-fetched and requires considerable knowledge and techniques beyond the reach of modern control theory. In this paper, we explore the classes of linear ensemble systems with system matrices that are not globally diagonalizable. In particular, we focus on analyzing their controllability properties under a Sobolev space settingmore »and develop conditions under which uniform controllability of such ensemble systems is equivalent to that of their diagonalizable counterparts. This development significantly facilitates controllability analysis for linear ensemble systems through examining diagonalized linear systems.« less
    Free, publicly-accessible full text available December 1, 2022
  8. Free, publicly-accessible full text available December 1, 2022
  9. Free, publicly-accessible full text available January 1, 2023
  10. Free, publicly-accessible full text available February 1, 2023