Despite fundamental interests in learning quantum circuits, the existence of a computationally efficient algorithm for learning shallow quantum circuits remains an open question. Because shallow quantum circuits can generate distributions that are classically hard to sample from, existing learning algorithms do not apply. In this work, we present a polynomial-time classical algorithm for learning the description of any unknown 𝑛-qubit shallow quantum circuit 𝑈 (with arbitrary unknown architecture) within a small diamond distance using single-qubit measurement data on the output states of 𝑈. We also provide a polynomial-time classical algorithm for learning the description of any unknown 𝑛-qubit state |𝜓⟩ = 𝑈|0^𝑛⟩ prepared by a shallow quantum circuit 𝑈 (on a 2D lattice) within a small trace distance using single-qubit measurements on copies of |𝜓⟩. Our approach uses a quantum circuit representation based on local inversions and a technique to combine these inversions. This circuit representation yields an optimization landscape that can be efficiently navigated and enables efficient learning of quantum circuits that are classically hard to simulate. 
                        more » 
                        « less   
                    This content will become publicly available on March 31, 2026
                            
                            Learning the closest product state
                        
                    
    
            We study the problem of finding a (pure) product state with optimal fidelity to an unknown n-qubit quantum state ρ, given copies of ρ. This is a basic instance of a fundamental question in quantum learning: is it possible to efficiently learn a simple approximation to an arbitrary state? We give an algorithm which finds a product state with fidelity ε-close to optimal, using N=npoly(1/ε) copies of ρ and poly(N) classical overhead. We further show that estimating the optimal fidelity is NP-hard for error ε=1/poly(n), showing that the error dependence cannot be significantly improved. For our algorithm, we build a carefully-defined cover over candidate product states, qubit by qubit, and then demonstrate that extending the cover can be reduced to approximate constrained polynomial optimization. For our proof of hardness, we give a formal reduction from polynomial optimization to finding the closest product state. Together, these results demonstrate a fundamental connection between these two seemingly unrelated questions. Building on our general approach, we also develop more efficient algorithms in three simpler settings: when the optimal fidelity exceeds 5/6; when we restrict ourselves to a discrete class of product states; and when we are allowed to output a matrix product state. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2505865
- PAR ID:
- 10631541
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2411.04283
- Date Published:
- ISSN:
- 2411.04283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Discriminating between quantum states is a fundamental task in quantum information theory. Given two quantum states, ρ+ and ρ− , the Helstrom measurement distinguishes between them with minimal probability of error. However, finding and experimentally implementing the Helstrom measurement can be challenging for quantum states on many qubits. Due to this difficulty, there is a great interest in identifying local measurement schemes which are close to optimal. In the first part of this work, we generalize previous work by Acin et al. (Phys. Rev. A 71, 032338) and show that a locally greedy (LG) scheme using Bayesian updating can optimally distinguish between any two states that can be written as a tensor product of arbitrary pure states. We then show that the same algorithm cannot distinguish tensor products of mixed states with vanishing error probability (even in a large subsystem limit), and introduce a modified locally-greedy (MLG) scheme with strictly better performance. In the second part of this work, we compare these simple local schemes with a general dynamic programming (DP) approach. The DP approach finds the optimal series of local measurements and optimal order of subsystem measurement to distinguish between the two tensor-product states.more » « less
- 
            We investigate the problem of predicting the output behavior of unknown quantum channels. Given query access to an n-qubit channel E and an observable O, we aim to learn the mapping ρ↦Tr(OE[ρ]) to within a small error for most ρ sampled from a distribution D. Previously, Huang, Chen, and Preskill proved a surprising result that even if E is arbitrary, this task can be solved in time roughly nO(log(1/ϵ)), where ϵ is the target prediction error. However, their guarantee applied only to input distributions D invariant under all single-qubit Clifford gates, and their algorithm fails for important cases such as general product distributions over product states ρ. In this work, we propose a new approach that achieves accurate prediction over essentially any product distribution D, provided it is not "classical" in which case there is a trivial exponential lower bound. Our method employs a "biased Pauli analysis," analogous to classical biased Fourier analysis. Implementing this approach requires overcoming several challenges unique to the quantum setting, including the lack of a basis with appropriate orthogonality properties. The techniques we develop to address these issues may have broader applications in quantum information.more » « less
- 
            We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.more » « less
- 
            null (Ed.)Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
