skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Ji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Abstract We study commutators with the Riesz transforms on the Heisenberg group$${\mathbb {H}}^{n}$$ H n . The Schatten norm of these commutators is characterized in terms of Besov norms of the symbol. This generalizes the classical Euclidean results of Peller, Janson–Wolff and Rochberg–Semmes. The method in proof bypasses the use of Fourier analysis, allowing us to address not just the Riesz transforms, but also the Cauchy–Szegő projection and second order Riesz transforms on$${\mathbb {H}}^{n}$$ H n among other settings. 
    more » « less
  6. Abstract We characterize the Hilbert–Schmidt class membership of commutator with the Hilbert transform in the two weight setting. The characterization depends upon the symbol of the commutator being in a new weighted Besov space. This follows from a Schatten classSpresult for dyadic paraproducts, where$$1< p < \infty $$ 1 < p < . We discuss the difficulties in extending the dyadic result to the full range of Schatten classes for the Hilbert transform. 
    more » « less
  7. The Degasperis-Procesi (DP) equation is an integrable Camassa-Holm-type model which is an asymptotic approximation for the unidirectional propagation of shallow water waves. This work establishes the orbital stability of localized smooth solitary waves to the DP equation on the real line, extending our previous work on their spectral stability [J. Math. Pures Appl. (9) 142 (2020), pp. 298–314]. The main difficulty stems from the fact that the natural energy space is a subspace of L 3 L^3 , but the translation symmetry for the DP equation gives rise to a conserved quantity equivalent to the L 2 L^2 -norm, resulting in L 3 L^3 higher-order nonlinear terms in the augmented Hamiltonian. But the usual coercivity estimate is in terms of L 2 L^2 norm for DP equation, which cannot be used to control the L 3 L^3 higher order term directly. The remedy is to observe that, given a sufficiently smooth initial condition satisfying some mild constraint, the L ∞ L^\infty orbital norm of the perturbation is bounded above by a function of its L 2 L^2 orbital norm, yielding the higher order control and the orbital stability in the L 2 ∩ L ∞ L^2\cap L^\infty space. 
    more » « less