skip to main content

Search for: All records

Creators/Authors contains: "Li, Jiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2024
  2. Free, publicly-accessible full text available August 10, 2023
  3. Community–academic partnerships (CAPs) are being increasingly used to study and address health disparity issues. CAPs help to create new bodies of knowledge and innovative solutions to community problems, which benefits the community and academia. Supported by a grant, a partnership was formed between an academic research team and a community health organization to analyze and interpret data collected from the caregivers of asthmatic African American children living in urban low-income households. Using a case study approach, we discuss how we built a healthy CAP and the lessons learned from the process. Our analysis was guided by the six main factors that facilitate success in developing collaborative relationships, including (1) environment; (2) membership; (3) process and structure; (4) communication; (5) purpose; and (6) resources. Based on these six factors, we describe our collaboration process, challenges, and areas for improvement. We aimed to provide a “points-to-consider” roadmap for academic and community partners to establish and maintain a mutually beneficial and satisfactory relationship. Collaborating with community members and organizations provides unique opportunities for researchers and students to apply their skills and knowledge from textbooks and the classroom, engage with community members, and improve real-life community needs. Building a constructive CAP involves efforts, energy,more »and resources from both parties. The six major themes derived from our project offer suggestions for building a healthy, collaborative, and productive relationship that best serves communities in the future.« less
    Free, publicly-accessible full text available August 1, 2023
  4. We report a new neural backdoor attack, named Hibernated Backdoor, which is stealthy, aggressive and devastating. The backdoor is planted in a hibernated mode to avoid being detected. Once deployed and fine-tuned on end-devices, the hibernated backdoor turns into the active state that can be exploited by the attacker. To the best of our knowledge, this is the first hibernated neural backdoor attack. It is achieved by maximizing the mutual information (MI) between the gradients of regular and malicious data on the model. We introduce a practical algorithm to achieve MI maximization to effectively plant the hibernated backdoor. To evade adaptive defenses, we further develop a targeted hibernated backdoor, which can only be activated by specific data samples and thus achieves a higher degree of stealthiness. We show the hibernated backdoor is robust and cannot be removed by existing backdoor removal schemes. It has been fully tested on four datasets with two neural network architectures, compared to five existing backdoor attacks, and evaluated using seven backdoor detection schemes. The experiments demonstrate the effectiveness of the hibernated backdoor attack under various settings.
    Free, publicly-accessible full text available June 30, 2023
  5. Myeloperoxidase (MPO) is a heme peroxidase with microbicidal properties. MPO plays a role in the host’s innate immunity by producing reactive oxygen species inside the cell against foreign organisms. However, there is little functional evidence linking missense mutations to human diseases. We utilized in silico saturation mutagenesis to generate and analyze the effects of 10,811 potential missense mutations on MPO stability. Our results showed that ~71% of the potential missense mutations destabilize MPO, and ~8% stabilize the MPO protein. We showed that G402W, G402Y, G361W, G402F, and G655Y would have the highest destabilizing effect on MPO. Meanwhile, D264L, G501M, D264H, D264M, and G501L have the highest stabilization effect on the MPO protein. Our computational tool prediction showed the destabilizing effects in 13 out of 14 MPO missense mutations that cause diseases in humans. We also analyzed putative post-translational modification (PTM) sites on the MPO protein and mapped the PTM sites to disease-associated missense mutations for further analysis. Our analysis showed that R327H associated with frontotemporal dementia and R548W causing generalized pustular psoriasis are near these PTM sites. Our results will aid further research into MPO as a biomarker for human complex diseases and a candidate for drug target discovery.
    Free, publicly-accessible full text available August 1, 2023
  6. Free, publicly-accessible full text available June 1, 2023
  7. Temporal soliton mode locking in coherently pumped microcavities is a promising route towards miniaturized frequency comb systems. However, the power efficiency of the resulting microcombs is usually quite low. Soliton generation by pulse pumping provides a way to increase conversion efficiency (so far, as high as 8%). Here, we study conversion efficiency and report a single-soliton conversion efficiency as high as 54% using a scanning laser, as well as a steady-state single-soliton conversion efficiency as high as 34%. We use the Lagrangian approach to develop analytical expressions for efficiency and soliton temporal placement within the pumping pulse, and our measurements reveal features in the tuning dependence of soliton power and efficiency not seen in continuous pumping. Our experimentally confirmed expressions for efficiency will be useful in understanding advantages and limitations of pulse pumped systems.

  8. Precious metals have been shown to play a vital role in the selective hydrogenation of α,β-unsaturated aldehydes, but still suffer from challenges to control selectivity. Herein, we have advanced the design of catalysts made out of Pt–Co intermetallic nanoparticles (IMNs) supported on a MIL-101(Cr) MOF (3%Pt y %Co/MIL-101(Cr)), prepared by using a polyol reduction method, as an effective approach to enhance selectivity toward the production of α,β-unsaturated alcohol, the desired product. XRD, N 2 adsorption–desorption, FTIR spectroscopy, SEM, TEM, XPS, CO adsorption, NH 3 -TPD, XANES and EXAFS measurements were used to investigate the structure and surface properties of our 3%Pt y %Co/MIL-101(Cr) catalysts. It was found that the Co-modified 3%Pt y %Co/MIL-101(Cr) catalysts can indeed improve the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL), reaching a higher selectivity under mild conditions than the monometallic Pt/MIL-101(Cr) catalysts: 95% conversion of CAL with 91% selectivity to COL can be reached with 3%Pt3%Co/MIL-101(Cr). Additionally, high conversion of furfural (97%) along with high selectivity to furfural alcohol (94%) was also attained with the 3%Pt3%Co/MIL-101(Cr) catalyst. The enhanced activity and selectivity toward the unsaturated alcohols are attributed to the electronic and geometric effects derived from the partial charge transfer between Co and Ptmore »through the formation of uniformly dispersed Pt–Co IMNs. Moreover, various characterization results revealed that the addition of Co to the IMPs can promote the Lewis acid sites that facilitate the polarization of the charge-rich CO bonds and their adsorption via their oxygen atom, and also generate new interfacial acid sites.« less