skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Li, Junfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a trade-off between the sparseness of an absorber array and its sound absorption imposed by wave physics. Here, near-perfect absorption (99% absorption) is demonstrated when the spatial period of monopole-dipole resonators is close to one working wavelength (95% of the wavelength). The condition for perfect absorption is to render degenerate monopole-dipole resonators critically coupled. Frequency domain simulations, eigenfrequency simulations, and the coupled mode theory are utilized to demonstrate the acoustic performances and the underlying physics. The sparse-resonator-based sound absorber could greatly benefit noise control with air flow and this study could also have implications for electromagnetic wave absorbers. 
    more » « less
  2. This paper investigates the mechanism of self-stabilizing, three-dimensional Mie particle manipulation in water via an acoustic tweezer with a single transducer. A carefully designed acoustic lens is attached to the transducer to form an acoustic vortex, which provides angular momentum on the trapped polymer sphere and leads to a fast-spinning motion. The sphere can find equilibrium positions spontaneously during the manipulation by slightly adjusting its relative position, angular velocity, and spinning axis. The spinning motion greatly enhances the low-pressure recirculation region around the sphere, resulting in a larger pressure induced drag. Simultaneously, the Magnus effect is induced to generate an additional lateral force. The spinning motion of the trapped sphere links the acoustic radiation force and hydrodynamic forces together, so that the sphere can spontaneously achieve new force balance and follow the translational motion of the acoustic tweezer. Non-spherical objects can also be manipulated by this acoustic tweezer.

    more » « less
  3. null (Ed.)
    Acoustic tweezers use ultrasound for contact-free, bio-compatible, and precise manipulation of particles from millimeter to submicrometer scale. In microfluidics, acoustic tweezers typically use an array of sources to create standing wave patterns that can trap and move objects in ways constrained by the limited complexity of the acoustic wave field. Here, we demonstrate spatially complex particle trapping and manipulation inside a boundary-free chamber using a single pair of sources and an engineered structure outside the chamber that we call a shadow waveguide. The shadow waveguide creates a tightly confined, spatially complex acoustic field inside the chamber without requiring any interior structure that would interfere with net flow or transport. Altering the input signals to the two sources creates trapped particle motion along an arbitrary path defined by the shadow waveguide. Particle trapping, particle manipulation and transport, and Thouless pumping are experimentally demonstrated. 
    more » « less
  4. Abstract

    Acoustic tweezers use ultrasound for contact-free manipulation of particles from millimeter to sub-micrometer scale. Particle trapping is usually associated with either radiation forces or acoustic streaming fields. Acoustic tweezers based on single-beam focused acoustic vortices have attracted considerable attention due to their selective trapping capability, but have proven difficult to use for three-dimensional (3D) trapping without a complex transducer array and significant constraints on the trapped particle properties. Here we demonstrate a 3D acoustic tweezer in fluids that uses a single transducer and combines the radiation force for trapping in two dimensions with the streaming force to provide levitation in the third dimension. The idea is demonstrated in both simulation and experiments operating at 500 kHz, and the achieved levitation force reaches three orders of magnitude larger than for previous 3D trapping. This hybrid acoustic tweezer that integrates acoustic streaming adds an additional twist to the approach and expands the range of particles that can be manipulated.

    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM. However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically revealed based on the generalized conservation principle of topological charge. This diffraction law can explain and predict the complicated diffraction phenomena of sound vortices, as confirmed by numerical simulations. To exemplify our findings, we designed and experimentally verified a PGM based on Helmholtz resonators that support asymmetric transmission of sound vortices. Our work provides previously unidentified opportunities for manipulating sound vortices, which can advance more versatile design for OAM-based devices. 
    more » « less