Abstract The significance of bound states in the continuum (BICs) lies in their potential for theoretically infinite quality factors. However, their actual quality factors are limited by imperfections in fabrication, which lead to coupling with the radiation continuum. In this study, we present a novel approach to address this issue by introducing a merging BIC regime based on a Lieb lattice. By utilizing this approach, we effectively suppress the out-of-plane scattering loss, thereby enhancing the robustness of the structure against fabrication artifacts. Notably, unlike previous merging systems, our design does not rely on the up-down symmetry of metasurfaces. This characteristic grants more flexibility in applications that involve substrates and superstrates with different optical properties, such as microfluidic devices. Furthermore, we incorporate a lateral band gap mirror into the design to encapsulate the BIC structure. This mirror serves to suppress the in-plane radiation resulting from finite-size effects, leading to a remarkable ten-fold improvement in the quality factor. Consequently, our merged BIC metasurface, enclosed by the Lieb lattice photonic crystal mirror, achieves an exceptionally high-quality factor of 105while maintaining a small footprint of 26.6 × 26.6 μm. Our findings establish an appealing platform that capitalizes on the topological nature of BICs within compact structures. This platform holds great promise for various applications, including optical trapping, optofluidics, and high-sensitivity biodetection, opening up new possibilities in these fields.
more »
« less
Observation of two-dimensional acoustic bound states in the continuum
Abstract The design of devices based on acoustic or optical fields requires the fabrication of cavities and structures capable of efficiently trapping these waves. A special type of cavity can be designed to support resonances with a theoretically infinite quality factor, named bound states in the continuum or BICs. The experimental measurement of such modes is still a challenging problem, as they are, by definition, not accessible from external perturbations. Here we report on the theoretical design and experimental realization of a two-dimensional, fully open acoustic resonator supporting BICs. This accidental BIC, whose symmetry is chosen during design by properly tailoring the geometrical properties of the system, is completely accessible and allows for the direct measurement of the whole pressure field and properties. We experimentally demonstrate its existence with high quality factor and field enhancement properties.
more »
« less
- Award ID(s):
- 1951106
- PAR ID:
- 10525532
- Publisher / Repository:
- NPG
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of bound states in the continuum (BICs) that support high-quality factor modes, and the Purcell effect, which enhances spontaneous emission rates at the nanoscale. These effects collectively underpin the design of advanced photonic devices with tailored spectral, angular, and polarization-dependent properties. This review discusses recent advances in metasurfaces and applications based on them, highlighting research that employs full-wave numerical simulations, analytical and semi-analytic techniques, multipolar decomposition, nanofabrication, and experimental characterization to explore the interplay of multipolar resonances, bound and quasi-bound states, and enhanced light–matter interactions. A particular focus is given to metasurface-enhanced photodetectors, where structured nanoantennas improve light absorption, spectral selectivity, and quantum efficiency. By integrating metasurfaces with conventional photodetector architectures, it is possible to enhance responsivity, engineer photocarrier generation rates, and even enable functionalities such as polarization-sensitive detection. The interplay between multipolar resonances, BICs, and emission control mechanisms provides a unified framework for designing next-generation optoelectronic devices. This review consolidates recent progress in these areas, emphasizing the potential of metasurface-based approaches for high-performance sensing, imaging, and energy-harvesting applications.more » « less
-
Abstract Mechanical bound states in the continuum (BICs) present an alternative avenue for developing high-frequency, high-Qmechanical resonators, distinct from the conventional band structure engineering method. While symmetry-protected mechanical BICs have been realized in phononic crystals, the observation of accidental mechanical BICs—whose existence is independent of mode symmetry and tunable by structural parameters—has remained elusive. This challenge is primarily attributed to the additional radiation channel introduced by the longitudinal component of elastic waves. Here, we employ a coupled wave theory to predict and experimentally demonstrate mechanical accidental BICs within a high-aspect-ratio gallium arsenide phononic crystal grating. We observe the merging process of accidental BICs with symmetry-protected BICs, resulting in reduced acoustic radiation losses compared to isolated BICs. This finding opens up new possibilities for phonon trapping using BIC-based systems, with potential applications in sensing, transduction, and quantum measurements.more » « less
-
Wavelength-selective thermal emitters (WS-EMs) hold considerable appeal due to the scarcity of cost-effective, narrow-band sources in the mid-to-long-wave infrared spectrum. WS-EMs achieved via dielectric materials typically exhibit thermal emission peaks with high quality factors (Qfactors), but their optical responses are prone to temperature fluctuations. Metallic EMs, on the other hand, show negligible drifts with temperature changes, but theirQfactors usually hover around 10. In this study, we introduce and experimentally verify an EM grounded in plasmonic quasi-bound states in the continuum (BICs) within a mirror-coupled system. Our design numerically delivers an ultra-narrowband single peak with aQfactor of approximately 64 and near-unity absorptance that can be freely tuned within an expansive band of more than 10 µm. By introducing air slots symmetrically, theQfactor can be further augmented to around 100. Multipolar analysis and phase diagrams are presented to elucidate the operational principle. Importantly, our infrared spectral measurements affirm the remarkable resilience of our designs’ resonance frequency in the face of temperature fluctuations over 300°C. Additionally, we develop an effective impedance model based on the optical nanoantenna theory to understand how further tuning of the emission properties is achieved through precise engineering of the slot. This research thus heralds the potential of applying plasmonic quasi-BICs in designing ultra-narrowband, temperature-stable thermal emitters in the mid-infrared. Moreover, such a concept may be adaptable to other frequency ranges, such as near-infrared, terahertz, and gigahertz.more » « less
-
Bound states in the continuum (BICs) hold significant promise in manipulating electromagnetic fields and reducing losses in optical structures, leading to advancements in fundamental research and practical applications. Despite their observation in various optical systems, the behavior of BIC in whispering-gallery-modes (WGMs) optical microcavities, essential components of photonic integrated chips, has yet to be thoroughly explored. In this study, we propose and experimentally identify a robust mechanism for generating quasi-BIC in a single deformed microcavity. By introducing boundary deformations, we construct stable unidirectional radiation channels as leaking continuum shared by different resonant modes and experimentally verify their external strong mode coupling. This results in drastically suppressed leaking loss of one originally long-lived resonance, manifested as more than a threefold enhancement of its quality (Q) factor, while the other short-lived resonance becomes more lossy, demonstrating the formation of Friedrich–Wintgen quasi-BICs as corroborated by the theoretical model and experimental data. This research will provide a practical approach to enhance theQ-factor of optical microcavities, opening up potential applications in the area of deformed microcavities, nonlinear optics, quantum optics, and integrated photonics.more » « less
An official website of the United States government

