skip to main content


Search for: All records

Creators/Authors contains: "Li, Junxu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a quantum algorithm for data classification based on the nearest-neighbor learning algorithm. The classification algorithm is divided into two steps: Firstly, data in the same class is divided into smaller groups with sublabels assisting building boundaries between data with different labels. Secondly we construct a quantum circuit for classification that contains multi control gates. The algorithm is easy to implement and efficient in predicting the labels of test data. To illustrate the power and efficiency of this approach, we construct the phase transition diagram for the metal-insulator transition ofVO2, using limited trained experimental data, whereVO2is a typical strongly correlated electron materials, and the metallic-insulating phase transition has drawn much attention in condensed matter physics. Moreover, we demonstrate our algorithm on the classification of randomly generated data and the classification of entanglement for various Werner states, where the training sets can not be divided by a single curve, instead, more than one curves are required to separate them apart perfectly. Our preliminary result shows considerable potential for various classification problems, particularly for constructing different phases in materials.

     
    more » « less
  2. Abstract

    Non‐classical features like interference are already being harnessed to control the output of chemical reactions. However, quantum entanglement which is an equally enigmatic many‐body quantum correlation can also be used as a powerful resource yet has eluded explicit attention. In this report, an experimental scheme under the crossed beam molecular dynamical setup, with the F + HD reaction, is proposed aiming to study the possible influence of entanglement within reactant pairs on the angular features of the product distribution. The aforesaid reaction has garnered interest recently, as an unusual horseshoe shape pattern in the product (HF) distribution was observed, which has been attributed to the coupling of spin and orbital degrees of freedom. An experimental scheme is proposed aiming to study the possible influence of entanglement on the necessity for the inclusion of such spin–orbit characteristics, under circumstances wherein the existence of entanglement and spin–orbit interaction is simultaneously detectable. The attainable results are further numerically simulated highlighting specific patterns corresponding to various possibilities. Such studies if extended can provide unforeseen mechanistic insight into analogous reactions, too, from the lens of quantum information.

     
    more » « less