skip to main content


Search for: All records

Creators/Authors contains: "Li, Mingqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2024
  2. All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L −1 ). These features were found to be vital in avoiding dendrite growth and enabling Li metal Coulombic efficiencies of 99.0%, 98.2%, and 98.7% at 23 °C, −40 °C, and 50 °C, respectively. Pouch cells employing thin Li metal (50 μm) and high-loading sulfurized polyacrylonitrile (3.3 mAh cm −2 ) cathodes (negative-to-positive capacity ratio = 2) output 87.5% and 115.9% of their room temperature capacity at −40 °C and 50 °C, respectively. This work provides solvent-based design criteria for a wide temperature range Li-sulfur pouch cells. 
    more » « less
  3. Lithium metal batteries are capable of pushing cell energy densities beyond what is currently achievable with commercial Li-ion cells and are the ideal technology for supplying power to electronic devices at low temperatures (≤−20 °C). To minimize the thermal management requirements of these devices, batteries capable of both charging and discharging at these temperatures are highly desirable. Here, we report >4 V Li metal full cell batteries (N/P = 2) capable of hundreds of stable cycles down to −40 °C, unambiguously enabled by the introduction of cation/anion pairs in the electrolyte. Via controlled experimental and computational investigations in electrolytes employing 1,2-dimethoxyethane as the solvating solvent, we observed distinct performance transitions in low temperature electrochemical performance, coincident with a shift in the Li + binding environment. The performance advantages of heavily ion-paired electrolytes were found to apply to both the cathode and anode, providing Li metal Coulombic efficiencies of 98.9, 98.5, and 96.9% at −20, −40, and −60 °C, respectively, while improving the oxidative stability in support of >4 V cathodes. This work reveals a strong correlation between ion-pairing and low-temperature performance while providing a viable route to Li metal full batteries cycling under extreme conditions. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g−1vs. <0.03 mAh g−1) at −40 °C under reduced pressure of the electrolyte.

     
    more » « less
  6. Abstract

    A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries.

     
    more » « less
  7. Abstract

    Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all‐fluorinated ester‐based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature‐resilient physicochemical properties and moderate ion‐paired solvation, leading to a half solvent‐separated and half contact‐ion pair in a sole electrolyte. As a result, facile desolvation and preferential reduction of anions/fluorinated co‐solvents for LiF‐dominated interphases are achieved without compromising ionic conductivity (>1 mS cm−1even at −40 °C). These advantageous features were found to apply to both lithium metal and sulfur‐based electrodes even under extreme operating conditions, allowing stable cycling of Li || sulfurized polyacrylonitrile (SPAN) full cells with high SPAN loading (>3.5 mAh cm−2) and thin Li anode (50 μm) at −40, 23 and 50 °C. This work offers a promising path for designing temperature‐resilient electrolytes to support high energy density Li metal batteries operating in extreme conditions.

     
    more » « less
  8. Abstract

    Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all‐fluorinated ester‐based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature‐resilient physicochemical properties and moderate ion‐paired solvation, leading to a half solvent‐separated and half contact‐ion pair in a sole electrolyte. As a result, facile desolvation and preferential reduction of anions/fluorinated co‐solvents for LiF‐dominated interphases are achieved without compromising ionic conductivity (>1 mS cm−1even at −40 °C). These advantageous features were found to apply to both lithium metal and sulfur‐based electrodes even under extreme operating conditions, allowing stable cycling of Li || sulfurized polyacrylonitrile (SPAN) full cells with high SPAN loading (>3.5 mAh cm−2) and thin Li anode (50 μm) at −40, 23 and 50 °C. This work offers a promising path for designing temperature‐resilient electrolytes to support high energy density Li metal batteries operating in extreme conditions.

     
    more » « less
  9. Abstract

    Thermo‐responsive polymers have been widely explored because of their diverse structures and functions in response to temperature stimuli. Great attention has been attracted to exploring and designing such polymers composites, which offer tremendous opportunities to build up a systematic understanding of their structure–function relationships and pave the ways for their extensive applications in electronics, soft robotics, and electrochemical energy storage devices. Here, we review the most recent research of thermal regulation in electrochemical energy storage devices (e.g., batteries, supercapacitors) via thermo‐responsive polymers. We summarize how battery components (i.e., electrolytes, separators, electrodes, or current collectors) can be coupled with thermo‐responsive polymers based on different operation mechanisms, such as volume expansion, polymerization, phase reversion, and de‐doping effects, to effectively prevent catastrophic thermal runaway. Different types of thermo‐responsive polymers are evaluated to compare their key features and/or limitations. This review is concluded with perspectives of future design strategies towards more effective thermo‐responsive polymers for battery thermal regulation.

     
    more » « less