Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available April 2, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available August 5, 2025
-
Unexpected long query latency of a database system can cause domino effects on all the upstream services and se- verely degrade end users’ experience with unpredicted long waits, resulting in an increasing number of users disengaged with the services and thus leading to a high user disengage- ment ratio (UDR). A high UDR usually translates to reduced revenue for service providers. This paper proposes UTSLO, a UDR-oriented SLO guaranteed system, which enables a database system to support multi-tenant UDR targets in a cost-effective fashion through UDR-oriented capacity plan- ning and dynamic UDR target enforcement. The former aims to estimate the feasibility of UDR targets while the latter dynamically tracks and regulates per-connection query la- tency distribution needed for accurate UDR target guarantee. In UTSLO, the database service capacity can be fully ex- ploited to efficiently accommodate tenants while minimizing resources required for UDR target guarantee.more » « less
-
Abstract Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1–3to quantum chemistry4–6and from atomic and molecular systems7–9to nuclear physics10–14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.more » « less
-
Abstract BackgroundAnalysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. ResultsHere we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), includingGossypium arboreum,Gossypium raimondii, andGossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved inGossypioidesandGossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestralin-cisinteractions. ConclusionsOur findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.more » « less