skip to main content

Search for: All records

Creators/Authors contains: "Li, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inspired by humans’ exceptional ability to master arithmetic and generalize to new problems, we present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines’ capability of learning generalizable concepts at three levels: perception, syntax, and semantics. In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images (i.e., perception), how multiple concepts are structurally combined to form a valid expression (i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics), all in a weakly supervised manner. Focusing on systematic generalization, we carefully design a five-fold test set to evaluate both the interpolation and the extrapolation of learned concepts w.r.t. the three levels. Further, we design a few-shot learning split to determine whether or not models can rapidly learn new concepts and generalize them to more complex scenarios. To comprehend existing models’ limitations, we undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3 (with the chain of thought prompting). The results indicate that current models struggle to extrapolate to long-range syntactic dependency and semantics. Models exhibit a considerable gap toward human-level generalization when evaluated with new concepts in a few-shot setting. Moreover, we discover that it is infeasible to solve HINT by merely scaling up the dataset and the model size; this strategy contributes little to the extrapolation of syntax and semantics. Finally, in zero-shot GPT-3 experiments, the chain of thought prompting exhibits impressive results and significantly boosts the test accuracy. We believe the HINT dataset and the experimental findings are of great interest to the learning community on systematic generalization. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract

    The electrical performance of stretchable electronic inks degrades as they undergo cyclic deformation during use, posing a major challenge to their reliability. The experimental characterization of ink fatigue behavior can be a time-consuming process, and models allowing accurate resistance evolution and life estimates are needed. Here, a model is proposed for determining the electrical resistance evolution during cyclic loading of a screen-printed composite conductive ink. The model relies on two input specimen-characteristic curves, assumes a constant rate of normalized resistance increase for a given strain amplitude, and incorporates the effects of both mean strain and strain amplitude. The model predicts the normalized resistance evolution of a cyclic test with reasonable accuracy. The mean strain effects are secondary compared to strain amplitude, except for large strain amplitudes (>10%) and mean strains (>30%). A trace width effect is found for the fatigue behavior of 1 mm vs 2 mm wide specimens. The input specimen-characteristic curves are trace-width dependent, and the model predicts a decrease inNfby a factor of up to 2 for the narrower trace width, in agreement with the experimental results. Two different methods are investigated to generate the rate of normalized resistance increase curves: uninterrupted fatigue tests (requiring ∼6–7 cyclic tests), and a single interrupted cyclic test (requiring only one specimen tested at progressively higher strain amplitude values). The results suggest that the initial decrease in normalized resistance rate only occurs for specimens with no prior loading. The minimum-rate curve is therefore recommended for more accurate fatigue estimates.

    more » « less
  4. Abstract Cyclic degradation in flexible electronic inks remains a key challenge while their deployment in life critical applications is ongoing. The origin of electrical degradation of a screen-printed stretchable conductive ink with silver flakes embedded in a polyurethane binder is investigated under uniaxial monotonic and cyclic stretching, using in-situ confocal microscopy and scanning electron microscopy experiments, for varying ink thickness (1, 2, and 3 layers, each layer around 8–10 μ m) and trace width (0.5, 1, and 2 mm). Cracks form under monotonic stretching, and the evolution of crack pattern (density, length and width) with applied strain is affected by ink thickness such that the 3-layer ink exhibits larger normalized resistance but slightly lower resistance than the 1-layer ink up to strains of 125%. For cyclic stretching, the crack density and length do not evolve with cycling. However, the cracks widen and deepen, leading to an increase in resistance with cycling. There exists a strong correlation between fatigue life, i.e. the number of cycles until a normalized resistance of 100 is reached, and the strain amplitude. The normalized resistance increase rate with respect to cycling is also found to scale with strain amplitude. The rate of change in resistance with cycling decreases with ink thickness and trace width. For practical applications, thicker ( ⩾ 25 μ m) and wider (⩾2 mm) inks should be used to lower resistance increases with repeated deformation. 
    more » « less
  5. The limited short circuit (SC) capability of GaN high-electron-mobility transistors (HEMTs) has become a critical concern for their adoption in many power applications. Recently, breakthrough SC robustness was demonstrated in a 650-V rated vertical GaN Fin-JFET with a short circuit withstanding time of over 30 µs at 400 V bus voltage (V BUS ), showing great potential for automotive powertrain and grid applications. This work presents the first study on the repetitive SC robustness of this GaN Fin-JFET at a V BUS of 400 V and 600 V. The GaN Fin-JFET survived 30,000 cycles of 400 V, 10 µs SC stresses without any degradation in device characteristics. At a 600 V V BUS , it survived over 8,000 cycles of 10 µs SC stresses before an open-circuit failure. This open-circuit failure signature allows the GaN Fin-JFET to retain its avalanche breakdown voltage and is highly desirable for system safety. Besides, an increase in gate leakage was observed during the 600 V repetitive test, which can be used as a precursor to predict device failure. As far as we know, this is the first report of an exceptional repetitive SC robustness in a power transistor at a V BUS close to its rated voltage. 
    more » « less