Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Extreme precipitation events are expected to increase in magnitude in response to global warming, but the magnitude of the forced response may vary considerably across distances of ~ 100 km or less. To examine the spatial variability of extreme precipitation and its sensitivity to global warming with high statistical certainty, we use a large (16,980 years), initial-condition ensemble of dynamically downscaled global climate model simulations. Under approximately 2 °C of global warming above a recent baseline period, we find large variability in the change (0 to > 60%) of the magnitude of very rare events (from 10 to 1000-year return period values of annual maxima of daily precipitation) across the western United States. Western (and predominantly windward) slopes of coastal ranges, the Cascades, and the Sierra Nevada typically show smaller increases in extreme precipitation than eastern slopes and bordering valleys and plateaus, but this pattern is less evident in the continental interior. Using the generalized extreme value shape parameter to characterize the tail of the precipitation distribution (light to heavy tail), we find that heavy tails dominate across the study region, but light tails are common on the western slopes of mountain ranges. The majority of the region shows a tendency toward heavier tails under warming, though some regions, such as plateaus of eastern Oregon and Washington, and the crest of the Sierra Nevada, show a lightening of tails. Spatially, changes in long return-period precipitation amounts appear to partially result from changes in the shape of the tail of the distribution.more » « less
-
A new diplumbane, namely [Pb(CH 2 SiMe 3 ) 3 ] 2 , was synthesized and structurally characterized. This group 14 element compound was found to catalyse the hydroboration of ketones and aldehydes under mild conditions without the use of additives and solvents, leading to the synthesis of a range of alcohols in high yields after hydrolysis.more » « less
-
Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as ‘gaps’ in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.more » « less
-
Reductive catalysis with earth-abundant metals is currently of increasing importance and shows potential in replacing precious metal catalysis. In this work, we revealed catalytic hydroboration and hydrosilylation of ketones and aldehydes achieved by a structurally defined manganese( ii ) coordination polymer (CP) as a precatalyst under mild conditions. The manganese-catalysed methodology can be applied to a range of functionalized aldehydes and ketones with turnover numbers (TON) of up to 990. Preliminary results on the regioselective catalytic hydrofunctionalization of styrenes by the Mn-CP catalyst are also presented.more » « less
-
Hydroboration of terminal and internal alkynes has been carried out with extremely high efficiency by using a bench-stable and inexpensive cobalt( ii ) coordination polymer as a precatalyst in the presence of potassium tert -butoxide (KO t Bu). Good to high yields of alkenylboronate esters were obtained in 5–30 min with low catalyst loading (0.025 mol%). Good chemoselectivity for alkyne vs alkene hydroboration was observed. A possible catalytic cycle involving the in situ formation of an active Co–H species is proposed based on additional experimental results. This work provides valuable implications for the design of efficient and practical base metal catalysts.more » « less
-
Abstract Extreme wind‐driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic autumn wildfires in the western United States co‐occurred with record‐ or near‐record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic influence on extreme autumn fire weather in 2017 and 2018. We show that while present‐day anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind‐driven fires have occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to high‐impact catastrophic fires in populated regions of the western US.more » « less
An official website of the United States government
