skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Li, Wan-Lu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The concept of metalla-aromaticity proposed by Thorn–Hoffmann ( Nouv. J. Chim . 1979, 3, 39) has been expanded to organometallic molecules of transition metals that have more than one independent electron-delocalized system. Lanthanides, with highly contracted 4f atomic orbitals, are rarely found in multiply aromatic systems. Here we report the discovery of a doubly aromatic triatomic lanthanide-boron molecule PrB 2 − based on a joint photoelectron spectroscopy and quantum chemical investigation. Global minimum structural searches reveal that PrB 2 − has a C 2v triangular structure with a paramagnetic triplet 3 B 2 electronic ground state, which can be viewed as featuring a trivalent Pr(III,f 2 ) and B 2 4− . Chemical bonding analyses show that this cyclo-PrB 2 − species is the smallest 4f-metalla-aromatic system exhibiting σ and π double aromaticity and multiple Pr–B bonding characters. It also sheds light on the formation of the rare B 2 4− tetraanion by the high-lying 5d orbitals of the 4f-elements, completing the isoelectronic B 2 4− , C 2 2− , N 2 , and O 2 2+ series. 
    more » « less
  2. Photoelectron spectroscopy and quantum chemistry studies are used to investigate the structure and bonding of AuB 8 − . Global minimum sturctural searches show that AuB 8 − possesses a chair-like structure, which can be viewed as Au + bonded to the edge of the doubly-aromatic B 8 2− borozene, Au + [η 2 -B 8 2− ]. Chemical bonding analyses reveal that the AuB 8 − is a novel borozene complex with unique Au–borozene bonding. 
    more » « less
  3. Abstract

    Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8species changes fromCstoC7vsymmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All theC7v-LnB8clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82−doubly aromatic ligand. The B73−, B82−, and B9series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes.

    more » « less
  4. null (Ed.)
  5. Abstract

    The discovery of borospherenes unveiled the capacity of boron to form fullerene-like cage structures. While fullerenes are known to entrap metal atoms to form endohedral metallofullerenes, few metal atoms have been observed to be part of the fullerene cages. Here we report the observation of a class of remarkable metallo-borospherenes, where metal atoms are integral parts of the cage surface. We have produced La3B18and Tb3B18and probed their structures and bonding using photoelectron spectroscopy and theoretical calculations. Global minimum searches revealed that the most stable structures of Ln3B18are hollow cages withD3hsymmetry. The B18-framework in the Ln3B18cages can be viewed as consisting of two triangular B6motifs connected by three B2units, forming three shared B10rings which are coordinated to the three Ln atoms on the cage surface. These metallo-borospherenes represent a new class of unusual geometry that has not been observed in chemistry heretofore.

    more » « less
  6. Despite the importance of bulk lanthanide borides, nanoclusters of lanthanide and boron have rarely been investigated. Here we show that lanthanide–boron binary clusters, La 2 B x − , can form a new class of inverse-sandwich complexes, [Ln(η x -B x )Ln] − ( x = 7–9). Joint experimental and theoretical studies reveal that the monocyclic B x rings in the inverse sandwiches display similar bonding, consisting of three delocalized σ and three delocalized π bonds. Such monocyclic boron rings do not exist for bare boron clusters, but they are stabilized by the sandwiching lanthanide atoms. An electron counting rule is proposed to predict the sizes of the B x ring that can form stable inverse sandwiches. A unique (d-p)δ bond is found to play important roles in the stability of all three inverse-sandwich complexes. 
    more » « less
  7. We report the observation of the first inverse triple-decker complex in a tri-lanthanide-doped boron cluster. Photoelectron spectroscopy of La3B14– reveals well-resolved photodetachment transitions. Quantum chemical studies show that the most stable structure of the La3B14– cluster exhibits a tilted La–B8–La–B8–La inverse triple-decker structure with two conjoined B8 rings sharing a pair of B atoms due to strong inter-layer B–B bonding. The tilted structure enhances both B–B and B–La bonding, resulting in a highly stable inverse triple-decker structure. Theoretical calculations further show that multi-decker conjoined structures are viable as a new class of 1D lanthanide boron nanostructures. 
    more » « less
  8. Since the discovery of the B 40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B 41 − and B 42 − , the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B 41 − reveal three low-lying isomers ( I–III ), which are all related to the planar B 40 − structure. Isomer II ( C s , 1 A′) possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I ( C s , 3 A′′) and III ( C s , 1 A′) both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B 42 − is found to be much more complicated with numerous low-lying isomers ( VII–XII ). The quasi-planar structure VIII ( C 1 , 2 A) containing a double hexagonal vacancy is found to make major contributions to the observed PE spectrum of B 42 − , while the other low-lying isomers may also be present to give rise to a complicated spectral pattern. Chemical bonding analyses show isomer II of B 41 − ( C s , 1 A′) and isomer VIII of B 42 − ( C 1 , 2 A) are π aromatic, analogous to that in the polycyclic aromatic hydrocarbon C 27 H 13 + ( C 2v , 1 A 1 ). Borospherene cage isomers are also found for both B 41 − and B 42 − in the global minimum searches, but they are much higher energy isomers. 
    more » « less