skip to main content

Search for: All records

Creators/Authors contains: "Li, Wenhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dense silver (Ag) cathodes with defined triple phase boundary (TPB between the interface of electrolyte, electrode, and gas) lengths (LTPB) and electrode areas (AELT) were fabricated by photolithography and E-beam evaporation over a proton conducting BaZr0.4Ce0.4Y0.1Yb0.1O3−δ (BZCYYb4411) electrolyte. A bi-layer lift-off resist method appears to be more versatile than a single layer lift-off resist method for successful patterned cathode fabrication. The electrochemical behaviors of the patterned Ag cathodes over the BZCYYb4411 electrolyte were tested by electrochemical impedance spectroscopy (EIS) at different temperatures in atmospheres with different concentrations of O2 and H2O. The results were processed using Distribution of Relaxation Times (DRT) and reaction order analyses and also fitted to equivalent circuits. The directions for future work on patterned electrodes with different LTPB and AELT and theoretical calculations to gain further insights into the kinetics and mechanism of the cathode oxygen reduction reaction (ORR) over proton conducting electrolytes are pointed out. 
    more » « less
    Free, publicly-accessible full text available January 9, 2025
  2. BaCo0.4Fe0.4Zr0.1Y0.1O3−σ (BCFZY) is a proton, oxygen-ion, and electron-hole conducting cathode material for intermediate temperature solid oxide fuel cells. Its electrode reaction mechanism in air with moisture is not well understood. In this study, three types of symmetrical cells with the same BCFZY cathode were fabricated over three related proton conducting electrolytes: BaZr0.8−xCexY0.1Yb0.1O3−δ (x = 0.1, 0.4, and 0.7). The cathode shows similar performance over three different electrolytes in dry air but different responses to moisture introduction. The differences are hypothesized to relate to the mutual diffusion at the cathode/electrolyte interface. Such a hypothesis is supported by different techniques such as XRD Rietveld refinement of BCFZY cathode in mixtures with different electrolytes after firing, energy-dispersive X-ray spectroscopy (EDS) line scanning for element concentration distribution at the cathode/electrolyte interface, as well as electrochemical test for a related BaCoFeO-type cathode with Zr replaced by Ce. 
    more » « less
    Free, publicly-accessible full text available October 31, 2024

    Post-starburst galaxies (PSBs) are transition galaxies showing evidence of recent rapid star formation quenching. To understand the role of galaxy mergers in triggering quenching, we investigate the incidence of PSBs and resolved PSB properties in post-merger galaxies using both SDSS single-fibre spectra and MaNGA resolved IFU spectra. We find post-mergers have a PSB excess of 10–20 times that relative to their control galaxies using single-fibre PSB diagnostics. A similar excess of ∼ 19 times is also found in the fraction of central (C)PSBs and ring-like (R)PSBs in post-mergers using the resolved PSB diagnostic. However, 60 per cent of the CPSBs + RPSBs in both post-mergers and control galaxies are missed by the single-fibre data. By visually inspecting the resolved PSB distribution, we find that the fraction of outside-in quenching is seven times higher than inside-out quenching in PSBs in post-mergers while PSBs in control galaxies do not show large differences in these quenching directions. In addition, we find a marginal deficit of H i gas in PSBs relative to non-PSBs in post-mergers using the MaNGA-H i data. The excesses of PSBs in post-mergers suggest that mergers play an important role in triggering quenching. Resolved IFU spectra are important to recover the PSBs missed by single-fibre spectra. The excess of outside-in quenching relative to inside-out quenching in post-mergers suggests that AGNs are not the dominant quenching mechanism in these galaxies, but that processes from the disc (gas inflows/consumption and stellar feedback) play a more important role.

    more » « less
  4. Abstract

    We investigate the role of galaxy mergers in triggering active galactic nuclei (AGN) in the nearby universe. Our analysis is based on a sample of 79 post-merger remnant galaxies with deep X-ray observations from Chandra/XMM-Newton capable of detecting a low-luminosity AGN of ≥1040.5erg s−1. This sample is derived from a visually classified, volume-limited sample of 807 post-mergers identified in the Sloan Digital Sky Survey Data Release 14 with logM*/M≥ 10.5 and 0.02 ≤z≤ 0.06. We find that the X-ray AGN fraction in this sample is 55.7% ± 5.6% compared to 23.6% ± 2.8% for a mass- and redshift-matched noninteracting control sample. The multiwavelength AGN fraction (identified as an AGN in one of X-ray, IR, radio or optical diagnostics) for post-mergers is 76.6% ± 4.8% compared to 39.1% ± 3.2% for controls. Thus post-mergers exhibit a high overall AGN fraction with an excess between 2 and 4 depending on the AGN diagnostics used. In addition, we find most optical, IR, and radio AGN are also identified as X-ray AGN while a large fraction of X-ray AGN are not identified in any other diagnostic. This highlights the importance of deep X-ray imaging to identify AGN. We find that the X-ray AGN fraction of post-mergers is independent of the stellar mass above logM*/M≥ 10.5 unlike the trend seen in control galaxies. Overall, our results show that post-merger galaxies are a good tracer of the merger–AGN connection and strongly support the theoretical expectations that mergers trigger AGN.

    more » « less
  5. JIA, Zhi-Yun (Ed.)
    Abstract Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species, but patterns and drivers of alien species assemblages remain poorly understood relative to native species. Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity. However, it remains unclear which climatic factors drive the assemblage of alien species. Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a resolution of 2° × 2°) and administrative scale (271 native and 297 current nations and sub-nations) on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions. This pattern was driven by extremely high temperatures and precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can account for the alien assemblage after invasions. Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions. 
    more » « less
  6. null (Ed.)