Optical metamaterials manipulate light through various confinement and scattering processes, offering unique advantages like high performance, small form factor and easy integration with semiconductor devices. However, designing metasurfaces with suitable optical responses for complex metamaterial systems remains challenging due to the exponentially growing computation cost and the ill‐posed nature of inverse problems. To expedite the computation for the inverse design of metasurfaces, a physics‐informed deep learning (DL) framework is used. A tandem DL architecture with physics‐based learning is used to select designs that are scientifically consistent, have low error in design prediction, and accurate reconstruction of optical responses. The authors focus on the inverse design of a representative plasmonic device and consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. The physics‐based constraint is derived from solving the electromagnetic wave equations for a simplified homogenized model. The model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input, and up to 96% for optical response of single wavelength of light as input, with optical response reconstruction accuracy of 99%.
This content will become publicly available on July 1, 2025
In the rapidly developing field of nanophotonics, machine learning (ML) methods facilitate the multi‐parameter optimization processes and serve as a valuable technique in tackling inverse design challenges by predicting nanostructure designs that satisfy specific optical property criteria. However, while considerable efforts have been devoted to applying ML for designing the overall spectral response of photonic nanostructures, often without elucidating the underlying physical mechanisms, physics‐based models remain largely unexplored. Here, physics‐empowered forward and inverse ML models to design dielectric meta‐atoms with controlled multipolar responses are introduced. By utilizing the multipole expansion theory, the forward model efficiently predicts the scattering response of meta‐atoms with diverse shapes and the inverse model designs meta‐atoms that possess the desired multipole resonances. Implementing the inverse design model, uniquely shaped meta‐atoms with enhanced higher‐order magnetic resonances and those supporting a super‐scattering regime of light‐matter interactions resulting in nearly five‐fold enhancement of scattering beyond the single‐channel limit are designed. Finally, an ML model to predict the wavelength‐dependent electric field distribution inside and near the meta‐atom is developed. The proposed ML based models will likely facilitate uncovering new regimes of linear and nonlinear light‐matter interaction at the nanoscale as well as a versatile toolkit for nanophotonic design.
more » « less- Award ID(s):
- 2240562
- PAR ID:
- 10538778
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 18
- Issue:
- 7
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optical metamaterials manipulate light through various confinement and scattering processes, offering unique advantages like high performance, small form factor and easy integration with semiconductor devices. However, designing metasurfaces with suitable optical responses for complex metamaterial systems remains challenging due to the exponentially growing computation cost and the ill-posed nature of inverse problems. To expedite the computation for the inverse design of metasurfaces, a physics-informed deep learning (DL) framework is used. A tandem DL architecture with physics-based learning is used to select designs that are scientifically consistent, have low error in design prediction, and accurate reconstruction of optical responses. The authors focus on the inverse design of a representative plasmonic device and consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. The physics-based constraint is derived from solving the electromagnetic wave equations for a simplified homogenized model. The model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input, and up to 96% for optical response of single wavelength of light as input, with optical response reconstruction accuracy of 99%.more » « less
-
Design optimization, and particularly adjoint-based multi-physics shape and topology optimization, is time-consuming and often requires expensive iterations to converge to desired designs. In response, researchers have developed Machine Learning (ML) approaches — often referred to as Inverse Design methods — to either replace or accelerate tools like Topology optimization (TO). However, these methods have their own hidden, non-trivial costs including that of data generation, training, and refinement of ML-produced designs. This begs the question: when is it actually worth learning Inverse Design, compared to just optimizing designs without ML assistance? This paper quantitatively addresses this question by comparing the costs and benefits of three different Inverse Design ML model families on a Topology Optimization (TO) task, compared to just running the optimizer by itself. We explore the relationship between the size of training data and the predictive power of each ML model, as well as the computational and training costs of the models and the extent to which they accelerate or hinder TO convergence. The results demonstrate that simpler models, such as K-Nearest Neighbors and Random Forests, are more effective for TO warmstarting with limited training data, while more complex models, such as Deconvolutional Neural Networks, are preferable with more data. We also emphasize the need to balance the benefits of using larger training sets with the costs of data generation when selecting the appropriate ID model. Finally, the paper addresses some challenges that arise when using ML predictions to warmstart optimization, and provides some suggestions for budget and resource management.more » « less
-
Optical metasurfaces consist of densely arranged unit cells that manipulate light through various light confinement and scattering processes. Due to its unique advantages, such as high performance, small form factor and easy integration with semiconductor devices, metasurfaces have been gathering increasing attention in fields such as displays, imaging, sensing and optical computation. Despite advances in fabrication and characterization, a viable design prediction for suitable optical response remains challenging for complex optical metamaterial systems. The computation cost required to obtain the optimal design exponentially grows as the design complexity increases. Furthermore, the design prediction is challenging since the inverse problem is often ill-posed. In recent years, deep learning (DL) methods have shown great promise in the area of inverse design. Inspired by this and the capability of DL to produce fast inference, we introduce a physics-informed DL framework to expedite the computation for the inverse design of metasurfaces. Addition of the physics-based constraints improve generalizability of the DL model while reducing data burden. Our approach introduces a tandem DL architecture with physics-based learning to alleviate the nonuniqueness issue by selecting designs that are scientifically consistent, with low error in design prediction and accurate reconstruction of optical responses. To prove the concept, we focus on the inverse design of a representative plasmonic device that consists of metal gratings deposited on a dielectric film on top of a metal substrate. The optical response of the device is determined by the geometrical dimensions as well as the material properties. The training and testing data are obtained through Rigorous Coupled-Wave Analysis (RCWA), while the physics-based constraint is derived from solving the electromagnetic (EM) wave equations for a simplified homogenized model. We consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. Our model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input. The model is also able to predict design with accuracy up to 96% and optical response reconstruction accuracy of 99% for optical response of a single wavelength of light as input.more » « less
-
Abstract Molecules composed of atoms exhibit properties not inherent to their constituent atoms. Similarly, metamolecules consisting of multiple meta‐atoms possess emerging features that the meta‐atoms themselves do not possess. Metasurfaces composed of metamolecules with spatially variant building blocks, such as gradient metasurfaces, are drawing substantial attention due to their unconventional controllability of the amplitude, phase, and frequency of light. However, the intricate mechanisms and the large degrees of freedom of the multielement systems impede an effective strategy for the design and optimization of metamolecules. Here, a hybrid artificial‐intelligence‐based framework consolidating compositional pattern‐producing networks and cooperative coevolution to resolve the inverse design of metamolecules in metasurfaces is proposed. The framework breaks the design of the metamolecules into separate designs of meta‐atoms, and independently solves the smaller design tasks of the meta‐atoms through deep learning and evolutionary algorithms. The proposed framework is leveraged to design metallic metamolecules for arbitrary manipulation of the polarization and wavefront of light. Moreover, the efficacy and reliability of the design strategy are confirmed through experimental validations. This framework reveals a promising candidate approach to expedite the design of large‐scale metasurfaces in a labor‐saving, systematic manner.