Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 15, 2025
-
Models for open quantum systems, which play important roles in electron transport problems and quantum computing, must take into account the interaction of the quantum system with the surrounding environment. Although such models can be derived in some special cases, in most practical situations, the exact models are unknown and have to be calibrated. This paper presents a learning method to infer parameters in Markovian open quantum systems from measurement data. One important ingredient in the method is a direct simulation technique of the quantum master equation, which is designed to preserve the completely-positive property with guaranteed accuracy. The method is particularly helpful in the situation where the time intervals between measurements are large. The approach is validated with error estimates and numerical experiments.more » « lessFree, publicly-accessible full text available July 11, 2025
-
Free, publicly-accessible full text available July 21, 2025
-
We present quantum algorithms for sampling from possibly non-logconcave probability distributions expressed as 𝜋(𝑥)∝exp(−𝛽𝑓(𝑥)) as well as quantum algorithms for estimating the partition function for such distributions. We also incorporate a stochastic gradient oracle that implements the quantum walk operators inexactly by only using mini-batch gradients when 𝑓 can be written as a finite sum. One challenge of quantizing the resulting Markov chains is that they do not satisfy the detailed balance condition in general. Consequently, the mixing time of the algorithm cannot be expressed in terms of the spectral gap of the transition density matrix, making the quantum algorithms nontrivial to analyze. We overcame these challenges by first building a reference reversible Markov chain that converges to the target distribution, then controlling the discrepancy between our algorithm’s output and the target distribution by using the reference Markov chain as a bridge to establish the total complexity. Our quantum algorithms exhibit polynomial speedups in terms of dimension or precision dependencies when compared to best-known classical algorithms under similar assumptions.more » « lessFree, publicly-accessible full text available June 24, 2025
-
Variational quantum algorithms rely on the optimization of parameterized quantum circuits in noisy settings. The commonly used back-propagation procedure in classical machine learning is not directly applicable in this setting due to the collapse of quantum states after measurements. Thus, gradient estimations constitute a significant overhead in a gradient-based optimization of such quantum circuits. This paper introduces a random coordinate descent algorithm as a practical and easy-to-implement alternative to the full gradient descent algorithm. This algorithm only requires one partial derivative at each iteration. Motivated by the behavior of measurement noise in the practical optimization of parameterized quantum circuits, this paper presents an optimization problem setting that is amenable to analysis. Under this setting, the random coordinate descent algorithm exhibits the same level of stochastic stability as the full gradient approach, making it as resilient to noise. The complexity of the random coordinate descent method is generally no worse than that of the gradient descent and can be much better for various quantum optimization problems with anisotropic Lipschitz constants. Theoretical analysis and extensive numerical experiments validate our findings. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available July 1, 2025
-
We present a novel method to simulate the Lindblad equation, drawing on the relationship between Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbitrarily high order. This unitary representation can then be simulated using a quantum circuit that involves only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postselection in measurement outcomes, ensuring a success probability of one at each stage. Our method can be directly generalized to the time-dependent setting. We provide numerical examples that simulate both time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order. Published by the American Physical Society2024more » « less
-
The convergence property of a stochastic algorithm for the self-consistent field (SCF) calculations of electron structures is studied. The algorithm is formulated by rewriting the electronic charges as a trace/diagonal of a matrix function, which is subsequently expressed as a statistical average. The function is further approximated by using a Krylov subspace approximation. As a result, each SCF iteration only samples one random vector without having to compute all the orbitals. We consider the common practice of SCF iterations with damping and mixing. We prove that the iterates from a general linear mixing scheme converge in a probabilistic sense when the stochastic error has a second finite moment.more » « less
-
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems. The performance of our algorithm is similar to the previous state-of-the-art quantum algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision. However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding. Our approach is based on a novel mathematical treatment of the evolution map, which involves a higher-order series expansion based on Duhamel’s principle and approximating multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more efficient approximation of time-ordered integrals, and therefore can simplify existing quantum algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.more » « less