Abstract Simulating open quantum systems, which interact with external environments, presents significant challenges on noisy intermediate‐scale quantum (NISQ) devices due to limited qubit resources and noise. In this study, an efficient framework is proposed for simulating open quantum systems on NISQ hardware by leveraging a time‐perturbative Kraus operator representation of the system's dynamics. This approach avoids the computationally expensive Trotterization method and exploits the Lindblad master equation to represent time evolution in a compact form, particularly for systems satisfying specific commutation relations. The efficiency of this method is demonstrated by simulating quantum channels, such as the continuous‐time Pauli channel and damped harmonic oscillators, on NISQ trapped‐ion hardware, including IonQ Harmony and Quantinuum H1‐1. Additionally, hardware‐agnostic error mitigation techniques are introduced, including Pauli channel fitting and quantum depolarizing channel inversion, to enhance the fidelity of quantum simulations. These results show strong agreement between the simulations on real quantum hardware and exact solutions, highlighting the potential of Kraus‐based methods for scalable and accurate simulation of open quantum systems on NISQ devices. This framework opens pathways for simulating more complex systems under realistic conditions in the near term.
more »
« less
Simulation-assisted learning of open quantum systems
Models for open quantum systems, which play important roles in electron transport problems and quantum computing, must take into account the interaction of the quantum system with the surrounding environment. Although such models can be derived in some special cases, in most practical situations, the exact models are unknown and have to be calibrated. This paper presents a learning method to infer parameters in Markovian open quantum systems from measurement data. One important ingredient in the method is a direct simulation technique of the quantum master equation, which is designed to preserve the completely-positive property with guaranteed accuracy. The method is particularly helpful in the situation where the time intervals between measurements are large. The approach is validated with error estimates and numerical experiments.
more »
« less
- Award ID(s):
- 2111221
- PAR ID:
- 10533580
- Publisher / Repository:
- Quantum Journal
- Date Published:
- Journal Name:
- Quantum
- Volume:
- 8
- ISSN:
- 2521-327X
- Page Range / eLocation ID:
- 1407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we report an implementation of the quantum trajectory‐guided adaptive Gaussian (QTAG) method in a modular open‐source Libra package for quantum dynamics calculations. The QTAG method is based on a representation of wavefunctions in terms of a quantum trajectory‐guided adaptable Gaussians basis and is generalized for time‐propagation on multiple coupled surfaces to be applicable to model nonadiabatic dynamics. The potential matrix elements are evaluated within either the local harmonic or bra‐ket‐average (linear) approximations to the potential energy surfaces, the latter being a more practical option. Performance of the QTAG method is demonstrated and discussed for the Holstein and Tully models, which are the standard benchmarks for method development in the area of nonadiabatic dynamics.more » « less
-
Symmetry is an important and unifying notion in many areas of physics. In quantum mechanics, it is possible to eliminate degrees of freedom from a system by leveraging symmetry to identify the possible physical transitions. This allows us to simplify calculations and characterize potentially complicated dynamics of the system with relative ease. Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures. In our present work, we develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers. Our approach estimates asymmetry measures based on the Hilbert–Schmidt distance, which is significantly easier, in a computational sense, than using fidelity as a metric. The method is derived to measure symmetries of states, channels, Lindbladians, and measurements. We apply this method to a number of scenarios involving open quantum systems, including the amplitude damping channel and a spin chain, and we test for symmetries within and outside the finite symmetry group of the Hamiltonian and Lindblad operators.more » « less
-
Manipulations with open quantum systems (such as qubits) are fundamental for any quantum technology. They are the focus of studies involving optimal control theory. Usually, control is achieved through the use of time-dependent external fields when driven system evolution is simulated employing the Davies construction (second-order Markov quantum master equation formulation). As a weak (second order) coupling scheme, the Davies construction is limited in its ability to account for bath-induced coherences. To overcome the limitation, we utilize the nonequilibrium Green’s function method and demonstrate that accounting for the coherences makes a qualitative impact on quantum control studies. We find that accounting for the coherences is especially important when dealing with system evolution involving mixed states.more » « less
-
Abstract Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet few studies have been done to develop quantum algorithms for open quantum dynamics despite its importance in modeling the system-environment interaction found in most realistic physical models. In this work we propose and demonstrate a general quantum algorithm to evolve open quantum dynamics on quantum computing devices. The Kraus operators governing the time evolution can be converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows the evolution of the initial state through unitary quantum gates, while using significantly less resource than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The proposed algorithm does not require particular models of dynamics or decomposition of the quantum channel, and thus can be easily generalized to other open quantum dynamical models.more » « less
An official website of the United States government

