- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Xiaohu (2)
-
Arp, Jennifer (1)
-
Ding, Haiping (1)
-
Du, Jiyuan (1)
-
Englot, Brendan (1)
-
Han, Beibei (1)
-
Hunter, Charles T (1)
-
Jackson, David (1)
-
Li, Qin‐Bao (1)
-
Li, Xinhai (1)
-
Li, Xinzheng (1)
-
Liu, Changlin (1)
-
Liu, Lei (1)
-
Lyskawinski, Michal (1)
-
Martin, John (1)
-
Moose, Steven (1)
-
Nie, Yongxin (1)
-
Pan, Guangtang (1)
-
Sachs, Martin M (1)
-
Shi, Jian (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea maysL.), one of the most highly produced cereal crops worldwide, would have a global impact on human health.PLASTID TERMINAL OXIDASE(PTOX) genes play an important role in carotenoid metabolism; however, the possible function ofPTOXin carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maizePTOXlocus by forward‐ and reverse‐genetic analyses. While most higher plant species possess a single copy of thePTOXgene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid‐deficient phenotype. We identified mutations in thePTOXgenes as being causal of the classic maize mutant,albescent1. Remarkably, overexpression ofZmPTOX1significantly improved the content of carotenoids, especially β‐carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maizePTOXlocus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine‐tuning the expression of this gene could improve the nutritional value of cereal grains.more » « less
-
Martin, John; Lyskawinski, Michal; Li, Xiaohu; Englot, Brendan (, Proceedings of the 37th International Conference on Machine Learning)null (Ed.)