skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xiaohu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Establishing a nonzero measurement of the electron Electric Dipole Moment (eEDM) has long been a fundamental pursuit in atomic, molecular and optical physics, offering possible insights into new physics beyond the Standard Model. In this regard, lead monofluoride (PbF) has emerged as a potential candidate for measuring eEDM primarily due to its suitable properties such as the strong internal effective electric field, and eEDM-sensitive ground state with large Ω-doubling and small magnetic g factor. In the present work, we realized the production of a buffer-gas-cooled PbF molecular beam and characterized its high-resolution spectroscopy in the B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition, including both direct absorption and laser-induced fluorescence spectroscopy. A highly concentrated beam of PbF molecules is obtained with a central forward velocity of 223 ± 17 m/s, while 81, 66 and 24 hyperfine-structure-resolved spectral lines with a frequency accuracy of 40 MHz have been assigned respectively for 208PbF, 207PbF and 206PbF isotopologues. The hyperfine constants due to the 19F nucleus (A∥ and A⊥) of the B state are reported for the first time, and those of the 207Pb nucleus have been also updated. Such a cryogenic molecular beam of PbF in association with its hyperfine-structure-resolved spectral atlas of the B 2Σ+(υ’=0) ← X1 2Π1/2(υ = 0) transition will be essential in developing sensitive detection schemes towards the eEDM measurement. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. SUMMARY Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea maysL.), one of the most highly produced cereal crops worldwide, would have a global impact on human health.PLASTID TERMINAL OXIDASE(PTOX) genes play an important role in carotenoid metabolism; however, the possible function ofPTOXin carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maizePTOXlocus by forward‐ and reverse‐genetic analyses. While most higher plant species possess a single copy of thePTOXgene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid‐deficient phenotype. We identified mutations in thePTOXgenes as being causal of the classic maize mutant,albescent1. Remarkably, overexpression ofZmPTOX1significantly improved the content of carotenoids, especially β‐carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maizePTOXlocus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine‐tuning the expression of this gene could improve the nutritional value of cereal grains. 
    more » « less
  3. null (Ed.)