skip to main content

Search for: All records

Creators/Authors contains: "Li, Xiaomeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Soil‐borne pathogens severely affect crop production, but the present distribution of agricultural soil‐borne pathogens and their response to global changes are unexplored at large spatial scales. Here, we examine the nationwide‐scale distribution patterns, dominant taxa and environmental drivers of fungal soil‐borne pathogens, and their response to warming, nutrient enrichment and their interaction.



    Time period

    July and August 2019.

    Major taxa studied

    Fungal plant pathogens.


    Through nationwide field surveys of 711 top‐ and subsoil samples in 51 cropland locations, we investigated the distribution patterns, environmental drivers and dominant taxa of fungal plant pathogens. We then conducted a mesocosm experiment with soils collected at 40 survey locations to evaluate the response patterns of fungal pathogens to global changes, including warming, nutrient enrichment and their interaction.


    We observed that the abundance and richness of potential soil‐borne pathogens were higher in the topsoil than in the subsoil. Mean annual temperature and mean annual precipitation as the main drivers had a stronger effect on the abundance, richness and community of pathogens in the topsoil than subsoil. Two phylotypes, belonging to genusFusarium, were the dominant soil‐borne pathogens accounting for approximately one third of total abundance, and their abundances (e.g. relative and absolute abundance via quantitative polymerase chain reaction) were negatively correlated with precipitation and temperature. The mesocosm experiment simulating global changes further revealed that the abundance and richness distributions of soil pathogens predicted the direction of their response to global changes, with a positive response in pathogen‐poor soil and negative in pathogen‐rich soil. We further constructed spatial atlases of the dominant soil‐borne pathogens and their responses to global changes in agricultural fields.

    Main conclusions

    Our findings suggest that the current distribution of potential soil‐borne pathogens is regulated by climate, which could affect their future dynamics and is vital to agricultural practices for pathogen control and crop production.

    more » « less