skip to main content


Search for: All records

Creators/Authors contains: "Li, Xiaoqin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 14, 2025
  2. The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin–orbit excitons (SOEs) in a quantum magnet CoTiO3(CTO). Here, we report phonon properties resulting from a combination of strong spin–orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to twoEgphonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

     
    more » « less
    Free, publicly-accessible full text available March 12, 2025
  3. Free, publicly-accessible full text available December 12, 2024
  4. Free, publicly-accessible full text available January 18, 2025
  5. Abstract The performance of electronic and optoelectronic devices is dominated by charge carrier injection through the metal–semiconductor contacts. Therefore, creating low-resistance electrical contacts is one of the most critical challenges in the development of devices based on new materials, particularly in the case of two-dimensional semiconductors. Herein, we report a strategy to reduce the contact resistance of MoS 2 via local pressurization. We fabricated electrical contacts using an atomic force microscopy tip and applied variable pressure ranging from 0 to 25 GPa. By measuring the transverse electronic transport properties, we show that MoS 2 undergoes a reversible semiconducting-metallic transition under pressure. Planar devices in field effect configuration with electrical contacts performed at pressures above ∼15 GPa show up to 30-fold reduced contact resistance and up to 25-fold improved field-effect mobility when compared to those measured at low pressure. Theoretical simulations show that this enhanced performance is due to improved charge injection to the MoS 2 semiconductor channel through the metallic MoS 2 phase obtained by pressurization. Our results suggest a novel strategy for realizing improved contacts to MoS 2 devices by local pressurization and for exploring emergent phenomena under mechano-electric modulation. 
    more » « less
  6. Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate. 
    more » « less
  7. Abstract Electron band topology is combined with intrinsic magnetic orders in MnBi 2 Te 4 , leading to novel quantum phases. Here we investigate collective spin excitations (i.e. magnons) and spin fluctuations in atomically thin MnBi 2 Te 4 flakes using Raman spectroscopy. In a two-septuple layer with non-trivial topology, magnon characteristics evolve as an external magnetic field tunes the ground state through three ordered phases: antiferromagnet, canted antiferromagnet, and ferromagnet. The Raman selection rules are determined by both the crystal symmetry and magnetic order while the magnon energy is determined by different interaction terms. Using non-interacting spin-wave theory, we extract the spin-wave gap at zero magnetic field, an anisotropy energy, and interlayer exchange in bilayers. We also find magnetic fluctuations increase with reduced thickness, which may contribute to a less robust magnetic order in single layers. 
    more » « less