skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xingguang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Simultaneous Localization and Mapping (SLAM) is an autonomous localization technique used for mobile robots without GPS. Since autonomous localization relies on pre-existing maps, to use SLAM with the Robotic Operating System (ROS), a map of the surroundings must first be created, and a controller can then use the initial map. The first mapping procedure is mostly carried out manually, with human intervention. When operating manually, the person operating the robot is responsible for avoiding obstacles and moving the robot to different sections of the space to create a full map of the entire environment. The mapping process, if done manually, is time demanding, and often not feasible. To solve this constraint, which is to construct a map of the environment autonomously without human involvement while avoiding obstacles, the Vector Field Histogram (VFH) technique is implemented in this study by integrating it with SLAM. VFH is a real-time motion planning approach in robotics that uses a statistical representation of the robot’s surroundings known as the histogram grid, to place a strong emphasis on handling modeling errors and sensor uncertainty. Furthermore, using range sensor values, the VFH algorithm determines a robot’s obstacle-free driving directions. Aside from its real-time obstacle avoidance function, the VFH method is enhanced in this study to collaborate with SLAM to create maps and reduce localization complexity. While generating maps, the VFH approach uses a two-step data-reduction procedure to calculate the appropriate vehicle control directives. The robot’s temporary location is used to generate a one-dimensional polar histogram, which is the first stage of the histogram grid reduction process. The polar obstacle density in a given direction is represented by a value in each sector of the polar histogram. In the second stage, the robot’s steering is oriented in the direction of the most appropriate sector, which the algorithm determines from all the polar histogram sectors with a low polar obstacle density. Following that, further algorithms, such as Rapidly Exploring Random Tree (RRT) and A*, can be used to plan autonomous pathways using the map provided by VFH. In order to put the concept into practice, MATLAB and ROS are used together in collaboration to autonomously and simultaneously map the environment and localize the robot. The combination of MATLAB and ROS provides many advantages because of their extensive feature set and ability to integrate with each other. Finally, a simulation and a real-time robot are utilized to analyze and validate the study’s findings. 
    more » « less
  2. Abstract Catalytic asymmetric dearomatization (CADA) is a powerful tool for the rapid construction of diverse chiral cyclic molecules from cheap and easily available arenes. This work reports an organocatalytic enantioselective dearomatization of substituted thiophenes in the context of a rare remote asymmetric 1,10-conjugate addition. By suitable stabilization of the thiophenyl carbocation with an indole motif in the form of indole imine methide, excellent remote chemo-, regio-, and stereocontrol in the nucleophilic addition can be achieved with chiral phosphoric acid catalysis under mild conditions. This protocol can be successfully extended to the asymmetric dearomatization of other heteroarenes including selenophenes and furans. Control experiments and DFT calculations demonstrate a possible pathway in which hydrogen bonding plays an important role in selectivity control. 
    more » « less
  3. null (Ed.)
  4. Abstract By using biphenyl‐2‐ylphosphines functionalized with a remote tertiary amino group as a ligand, readily available acetylenic amides are directly converted into 2‐aminofurans devoid of any electron‐withdrawing and hence deactivating/stabilizing substituents. These highly electron‐rich furans have rarely been prepared, let alone applied in synthesis, because of their high reactivities and low stabilities associated with the electron‐rich nature of the furan ring. In this work, these reactive furans smoothly undergo either in situ intermolecular Diels–Alder reactions to deliver highly functionalized/substituted aniline products or intramolecular ones to furnish carbazole‐4‐carboxylates in mostly good to excellent yields. This work offers general and expedient access to this class of little studies electron‐rich furans and should lead to exciting opportunities for their applications. 
    more » « less