skip to main content


Search for: All records

Creators/Authors contains: "Li, Xinlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    During active geomagnetic periods both electrons and protons in the outer radiation belt have been frequently observed to penetrate to lowL(<4). Previous studies have demonstrated systematic differences in the deep penetration of the two species of particles, most notably that the penetration of protons is observed less frequently than for electrons of the same energies. A recent study by Mei et al. (2023,https://doi.org/10.1029/2022GL101921) showed that the time‐varying convection electric field contributes to the deeper penetration of low‐energy electrons and that a radial diffusion‐convection model can be used to reproduce the storm‐time penetration of lower‐energy electrons to lowerL. In this study, we analyze and provide physical explanations for the different behaviors of electrons and protons in terms of their penetration depth to lowL. A radial diffusion‐convection model is applied for the two species with coefficients that are adjusted according to the mass‐dependent relativistic effects on electron and proton drift velocity, and the different loss mechanisms included for each species. Electromagnetic ion cyclotron (EMIC) wave scattering losses for 100s of keV protons during a specific event are modeled and quantified; the results suggest that EMIC waves interacting with protons of lower energies than electrons can contribute to prevent the inward transport of the protons.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Abstract

    The discovery of the Van Allen radiation belts marked a prominent milestone in space physics. Recent advances, through the measurements of two CubeSat missions, have shed new light on the dynamics of energetic particles in the near‐Earth environment. Measurements from CSSWE, a student‐led mission, revealed that the decay of low‐energy neutrons, associated with cosmic rays impacting the atmosphere, is the primary source of relativistic electrons at the inner edge of the inner belt (Li et al.,Nature, 2017,https://doi.org/10.1038/nature2464). Recently CIRBE captured striking details of energetic electron dynamics (Li et al.,GRL, 2024,https://doi.org/10.1029/2023gl107521), further demonstrating high‐quality science achievable with CubeSat missions.

     
    more » « less
  3. Abstract

    Deep penetration of outer radiation belt electrons to lowL(<3.5) has long been recognized as an energy‐dependent phenomenon but with limited understanding. The Van Allen Probes measurements have clearly shown energy‐dependent electron penetration during geomagnetically active times, with lower energy electrons penetrating to lowerL. This study aims to improve our ability to model this phenomenon by quantitatively considering radial transport due to large‐scale azimuthal electric fields (E‐fields) as an energy‐dependent convection term added to a radial diffusion Fokker‐Planck equation. We use a modified Volland‐Stern model to represent the enhanced convection field at lowerLto match the observations of storm time values ofE‐field. We model 10–400 MeV/G electron phase space density with an energy‐dependent radial diffusion coefficient and this convection term and show that the model reproduces the observed deep penetrations well, suggesting that time‐variant azimuthalE‐fields contribute preferentially to the deep penetration of lower‐energy electrons.

     
    more » « less