Abstract We compared the performance of DREAM3D simulations in reproducing the long‐term radiation belt dynamics observed by Van Allen Probes over the entire year of 2017 with various boundary conditions (BCs) and model inputs. Specifically, we investigated the effects of three different outer boundary conditions, two different low‐energy boundary conditions for seed electrons, four different radial diffusion (RD) coefficients (DLL), four hiss wave models, and two chorus wave models from the literature. Using the outer boundary condition driven by GOES data, our benchmark simulation generally well reproduces the observed radiation belt dynamics insideL* = 6, with a better model performance at lowerμthan higherμ, whereμis the first adiabatic invariant. By varying the boundary conditions and inputs, we find that: (a) The data‐driven outer boundary condition is critical to the model performance, while adding in the data‐driven seed population doesn't further improve the performance. (b) The model shows comparable performance withDLLfrom Brautigam and Albert (2000,https://doi.org/10.1029/1999ja900344), Ozeke et al. (2014,https://doi.org/10.1002/2013ja019204), and Liu et al. (2016,https://doi.org/10.1002/2015gl067398), while withDLLfrom Ali et al. (2016,https://doi.org/10.1002/2016ja023002) the model shows less RD compared to data. (c) The model performance is similar with data‐based hiss models, but the results show faster loss is still needed inside the plasmasphere. (d) The model performs similarly with the two different chorus models, but better capturing the electron enhancement at higherμusing the Wang et al. (2019,https://doi.org/10.1029/2018ja026183) model due to its stronger wave power, since local heating for higher energy electrons is under‐reproduced in the current model. 
                        more » 
                        « less   
                    
                            
                            On the Physical Mechanisms Driving the Different Deep Penetration of Radiation Belt Electrons and Protons
                        
                    
    
            Abstract During active geomagnetic periods both electrons and protons in the outer radiation belt have been frequently observed to penetrate to lowL(<4). Previous studies have demonstrated systematic differences in the deep penetration of the two species of particles, most notably that the penetration of protons is observed less frequently than for electrons of the same energies. A recent study by Mei et al. (2023,https://doi.org/10.1029/2022GL101921) showed that the time‐varying convection electric field contributes to the deeper penetration of low‐energy electrons and that a radial diffusion‐convection model can be used to reproduce the storm‐time penetration of lower‐energy electrons to lowerL. In this study, we analyze and provide physical explanations for the different behaviors of electrons and protons in terms of their penetration depth to lowL. A radial diffusion‐convection model is applied for the two species with coefficients that are adjusted according to the mass‐dependent relativistic effects on electron and proton drift velocity, and the different loss mechanisms included for each species. Electromagnetic ion cyclotron (EMIC) wave scattering losses for 100s of keV protons during a specific event are modeled and quantified; the results suggest that EMIC waves interacting with protons of lower energies than electrons can contribute to prevent the inward transport of the protons. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10543297
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 8
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Deep penetration of outer radiation belt electrons to lowL(<3.5) has long been recognized as an energy‐dependent phenomenon but with limited understanding. The Van Allen Probes measurements have clearly shown energy‐dependent electron penetration during geomagnetically active times, with lower energy electrons penetrating to lowerL. This study aims to improve our ability to model this phenomenon by quantitatively considering radial transport due to large‐scale azimuthal electric fields (E‐fields) as an energy‐dependent convection term added to a radial diffusion Fokker‐Planck equation. We use a modified Volland‐Stern model to represent the enhanced convection field at lowerLto match the observations of storm time values ofE‐field. We model 10–400 MeV/G electron phase space density with an energy‐dependent radial diffusion coefficient and this convection term and show that the model reproduces the observed deep penetrations well, suggesting that time‐variant azimuthalE‐fields contribute preferentially to the deep penetration of lower‐energy electrons.more » « less
- 
            Abstract Energetic particle deep penetration into low L‐shells (L < 4) impacts the dynamics of the radiation belts and ring current. Previous studies reported that electrons penetrate more frequently, deeply, and faster than protons of similar energies, but underlying mechanisms are unclear. In this study, we compare heavy‐ion behavior with electrons and protons to further identify the underlying mechanisms. Using Van Allen Probes data, we show that electron deep penetration occurs most frequently and deeply, followed by O+ions, then He+ions, and finally protons. Most particle deep penetrations occur within several hours. Superposed epoch analysis shows that prior to deep penetration, electrons have the steepest phase space density radial gradients, followed by heavy ions and then protons for the sameμandK. Our study suggests that a combination of two or more mechanisms, such as convection electric field and plasma wave‐induced scattering, may be needed to fully explain particle deep penetration.more » « less
- 
            Abstract Deep penetration of energetic electrons (10s–100s of keV) to lowL‐shells (L < 4), as an important source of inner belt electrons, is commonly observed during geomagnetically active times. However, such deep penetration is not observed as frequently for similar energy protons, for which underlying mechanisms are not fully understood. To study their differential deep penetration, we conducted a statistical analysis using phase space densities (PSDs) ofµ = 10–50 MeV/G,K = 0.14 G1/2Re electrons and protons from multiyear Van Allen Probes observations. The results suggest systematic differences in electron and proton deep penetration: electron PSD enhancements at lowL‐shells occur more frequently, deeply, and faster than protons. Forµ = 10–50 MeV/G electrons, the occurrence rate of deep penetration events (defined as daily‐averaged PSD enhanced by at least a factor of 2 within a day atL < 4) is ∼2–3 events/month. For protons, only ∼1 event/month was observed forµ = 10 MeV/G, and much fewer events were identified forµ > 20 MeV/G. Leveraging dual‐Probe configurations, fast electron deep penetrations atL < 4 are revealed: ∼70% of electron deep penetration events occurred within ∼9 hr; ∼8%–13% occurred even within 3 hr, with lower‐µelectrons penetrating faster than higher‐µelectrons. These results suggest nondiffusive radial transport as the main mechanism of electron deep penetrations. In comparison, proton deep penetration happens at a slower pace. Statistics also show that the electron PSD radial gradient is much steeper than protons prior to deep penetration events, which can be responsible for these differential behaviors of electron and proton deep penetrations.more » « less
- 
            Abstract Earth's slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift‐diffusion‐source model, we investigate the relative contribution of all significant waves and CRAND to the dynamics of energetic electrons in the slot region during July 2014, an extended period of quiet geomagnetic activity. The bounce‐averaged PA diffusion coefficients from three types of waves (hiss, lightning‐generated whistlers [LGW], and very low frequency [VLF] transmitters) are calculated based on quasi‐linear theory, while the CRAND source follows the results in Xiang et al. (2019,https://doi.org/10.1029/2018GL081730). The simulation results indicate that both LGW and VLF transmitter waves can enhance loss and weaken the top hat PA distribution induced by hiss waves. For 470 keV electrons atL = 2.5, simulation results without CRAND show a much quicker decrease than observations from the Van Allen Probes. After including CRAND, simulated electron flux variations reproduce satellite observations, suggesting that CRAND is an important source for hundreds of keV electrons in the slot region during quiet times. The balance between the CRAND source and loss due to wave‐particle interactions provides a lower limit to relativistic electron fluxes in the slot region, which can act as an important reference point for instrument calibration when a true background level is warranted.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    