skip to main content


Search for: All records

Creators/Authors contains: "Li, Xiuying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.

     
    more » « less
  2. null (Ed.)
  3. Bouskill, Nick (Ed.)
    ABSTRACT The class Dehalococcoidia within the Chloroflexi phylum comprises the obligate organohalide-respiring genera Dehalococcoides , Dehalogenimonas , and “ Candidatus Dehalobium.” Knowledge of the unique ecophysiology and biochemistry of Dehalococcoidia has been largely derived from studies with enrichment cultures and isolates from sites impacted with chlorinated pollutants; however, culture-independent surveys found Dehalococcoidia sequences in marine, freshwater, and terrestrial biomes considered to be pristine (i.e., not impacted with organohalogens of anthropogenic origin). The broad environmental distribution of Dehalococcoidia , as well as other organohalide-respiring bacteria, supports the concept of active halogen cycling and the natural formation of organohalogens in various ecosystems. Dechlorination reduces recalcitrance and renders organics susceptible to metabolic oxidation by diverse microbial taxa. During reductive dechlorination, hydrogenotrophic organohalide-respiring bacteria, in particular Dehalococcoidia , can consume hydrogen to low consumption threshold concentrations (<0.3 nM) and enable syntrophic oxidation processes. These functional attributes and the broad distribution imply that Dehalococcoidia play relevant roles in carbon cycling in anoxic ecosystems. 
    more » « less
  4. Efficient delivery to the cell nucleus remains a significant challenge for many biomolecules, including anticancer drugs, proteins and DNAs. Despite numerous attempts to improve nuclear import including the use of nuclear localization signal (NLS) peptides and nanoparticle carriers, they are limited by the nanoparticle size, conjugation method, dependence on the functional nuclear import and intracellular trafficking mechanisms. To overcome these limitations, here we report that the nanomechanical force from plasmonic nanobubbles increases nuclear membrane permeability and promotes universal uptake of macromolecules into the nucleus, including macromolecules that are larger than the nuclear pore complex and would otherwise not enter the nucleus. Importantly, we show that plasmonic nanobubble-induced nanomechanical transduction significantly improves gene transfection and protein expression, compared to standard electroporation treatment alone. This novel nanomechanical transduction increases the size range and is broadly applicable for macromolecule delivery to the cell nucleus, leading to new opportunities and applications including for gene therapy and anticancer drug delivery. 
    more » « less
  5. Abstract

    Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach usingPlasmonic nAnovesicles and cell‐based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.

     
    more » « less
  6. Abstract

    Neuropeptides are abundant signaling molecules in the central nervous system. Yet remarkably little is known about their spatiotemporal spread and biological activity. Here, we developed an integrated optical approach usingPlasmonic nAnovesicles and cell‐based neurotransmitter fluorescent engineered reporter (CNiFER), or PACE, to probe neuropeptide signaling in the mouse neocortex. Small volumes (fL to pL) of exogenously supplied somatostatin‐14 (SST) can be rapidly released under near‐infrared light stimulation from nanovesicles implanted in the brain and detected by SST2 CNiFERs with nM sensitivity. Our measurements reveal reduced but synchronized SST transmission within 130 μm, and markedly smaller and delayed transmission at longer distances. These measurements enabled a quantitative estimation of the SST loss rate due to peptide degradation and binding. PACE offers a new tool for determining the spatiotemporal scales of neuropeptide volume transmission and signaling in the brain.

     
    more » « less