skip to main content


Search for: All records

Creators/Authors contains: "Li, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Environmental stimuli trigger rapid transcriptional reprogramming of gene networks. These responses occur in the context of the local chromatin landscape, but the contribution of organ-specific dynamic chromatin modifications in responses to external signals remains largely unexplored. We treated tomato seedlings with a supply of nitrate and measured the genome-wide changes of four histone marks, the permissive marks H3K27ac, H3K4me3, and H3K36me3 and repressive mark H3K27me3, in shoots and roots separately, as well as H3K9me2 in shoots. Dynamic and organ-specific histone acetylation and methylation were observed at functionally relevant gene loci. Integration of transcriptomic and epigenomic datasets generated from the same organ revealed largely syngenetic relations between changes in transcript levels and histone modifications, with the exception of H3K27me3 in shoots, where an increased level of this repressive mark is observed at genes activated by nitrate. Application of a machine learning approach revealed organ-specific rules regarding the importance of individual histone marks, as H3K36me3 is the most successful mark in predicting gene regulation events in shoots, while H3K4me3 is the strongest individual predictor in roots. Our integrated study substantiates a view that during plant environmental responses, the relationships between histone code dynamics and gene regulation are highly dependent on organ-specific contexts.

     
    more » « less
  2. Abstract

    The recognition of membrane separations as a vital technology platform for enhancing the efficiency of separation processes has been steadily increasing. Concurrently, 3D printing has emerged as an innovative approach to fabricating reverse osmosis membranes for water desalination and treatment purposes. This method provides a high degree of control over membrane chemistry and structural properties. In particular, when compared to traditional manufacturing techniques, 3D printing holds the potential to expedite customization, a feat that is typically achieved through conventional manufacturing methods but often involves numerous processes and significant costs. This review aims to present the current advancements in membrane manufacturing technology specifically tailored for water desalination purposes, with a particular focus on the development of 3D-printed membranes. A comprehensive analysis of recent progress in 3D-printed membranes is provided. However, conducting experimental work to investigate various influential factors while ensuring consistent results poses a significant challenge. To address this, we explore how membrane manufacturing processes and performance can be effectively pre-designed and guided through the use of molecular dynamics simulations. Finally, this review outlines the challenges faced and presents future perspectives to shed light on research directions for optimizing membrane manufacturing processes and achieving optimal membrane performance.

     
    more » « less
  3. Plants are constantly exposed to volatile organic compounds (VOCs) that are released during plant-plant communication, within-plant self-signaling, and plant-microbe interactions. Therefore, understanding VOC perception and downstream signaling is vital for unraveling the mechanisms behind information exchange in plants, which remain largely unexplored. Using the hormone-like function of volatile terpenoids in reproductive organ development as a system with a visual marker for communication, we demonstrate that a petunia karrikin-insensitive receptor, PhKAI2ia, stereospecifically perceives the (−)-germacrene D signal, triggering a KAI2-mediated signaling cascade and affecting plant fitness. This study uncovers the role(s) of the intermediate clade of KAI2 receptors, illuminates the involvement of a KAI2ia-dependent signaling pathway in volatile communication, and provides new insights into plant olfaction and the long-standing question about the nature of potential endogenous KAI2 ligand(s).

     
    more » « less
    Free, publicly-accessible full text available March 22, 2025
  4. Free, publicly-accessible full text available November 10, 2024
  5. The anisotropic properties of Janus NPs are crucial for their ability to disrupt the negative-surface bacterial membrane modelviathe combination of hydrophobic and electrostatic interactions.

     
    more » « less
    Free, publicly-accessible full text available October 12, 2024
  6. Abstract

    Superconducting topological metals (SCTMs) have recently emerged as a promising platform of topological superconductivity (TSC) and Majorana zero modes for quantum computation. Despite their importance in both fundamental research and applications, SCTMs are very rare in nature. Here, we propose a strategy to design SCTMs by intercalating the superconducting units into the topological insulators. A program that characterizes the superconducting BdG Chern number of 2D BdG Hamiltonian from ab initio calculations is also developed. Following this strategy, PdBi2Te5and PdBi2Te4are found to be experimentally synthesizable and ideal SCTMs. Chiral TSC could be realized in such SCTMs by incorporating topological surface states with Zeeman effect, which can be realized by an external magnetic field or in proximity to ferromagnetic insulator. Our strategy provides a new method for identifying the SCTMs and TSC candidates, and the program makes it possible to design and modulate the TSC candidates from ab initio calculations.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Free, publicly-accessible full text available October 2, 2024
  8. Solvent-free synthesis of porous PTFE thin film coated Cu nanocomposite for selective multi-carbon production from electrochemical CO2reduction.

     
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  9. Free, publicly-accessible full text available July 25, 2024