Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 17, 2025
-
Free, publicly-accessible full text available June 17, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
The electrochemical CO 2 or CO reduction to chemicals and fuels using renewable energy is a promising way to reduce anthropogenic carbon emissions. The gas diffusion electrode (GDE) design enables low-carbon manufacturing of target products at a current density (e.g., 500 mA cm ā2 ) relevant to industrial requirements. However, the long-term stability of the GDE is restricted by poor water management and flooding, resulting in a significant hydrogen evolution reaction (HER) within almost an hour. The optimization of water management in the GDE demands a thorough understanding of the role of the gas diffusion layer (GDL) and the catalyst layer (CL) distinctively. Herein, the hydrophobicity of the GDL and CL is independently adjusted to investigate their influence on gas transport efficiency and water management. The gas transport efficiency is more enhanced with the increase in hydrophobicity of the GDL than the CL. Direct visualization of water distribution by optical microscope and micro-computed tomography demonstrates that the water flow pattern transfers from the stable displacement to capillary fingering as GDL hydrophobicity increases. Unfortunately, only increasing the hydrophobicity is not sufficient to prevent flooding. A revolutionary change in the design of the GDE structure is essential to maintain the long-term stability of CO 2 /CO reduction.more » « less
-
null (Ed.)Here we report that in situ reconstructed Cu two-dimensional (2D) defects in CuO nanowires during CO 2 RR lead to significantly enhanced activity and selectivity of C 2 H 4 compared to the CuO nanoplatelets. Specifically, the CuO nanowires achieve high faradaic efficiency of 62% for C 2 H 4 and a partial current density of 324 mA cm ā2 yet at a low potential of ā0.56 V versus a reversible hydrogen electrode. Structural evolution characterization and in situ Raman spectra reveal that the high yield of C 2 H 4 on CuO nanowires is attributed to the in situ reduction of CuO to Cu followed by structural reconstruction to form 2D defects, e.g. , stacking faults and twin boundaries, which improve the CO production rate and *CO adsorption strength. This finding may provide a paradigm for the rational design of nanostructured catalysts for efficient CO 2 electroreduction to C 2 H 4 .more » « less