The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products’ efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Key points • Molecular integrity may suffer with increasing process intensity. • Galactosylated and sialylated N-glycans may decrease. • Perfusion culture appears to maintain protein charge structure. Free, publicly-accessible full text available December 1, 2025 -
Free, publicly-accessible full text available June 1, 2025
-
Abstract A majority of the biotherapeutics industry today relies on the manufacturing of monoclonal antibodies from Chinese hamster ovary (CHO) cells, yet challenges remain with maintaining consistent product quality from high‐producing cell lines. Previous studies report the impact of individual trace metal supplemental on CHO cells, and thus, the combinatorial effects of these metals could be leveraged to improve bioprocesses further. A three‐level factorial experimental design was performed in fed‐batch shake flasks to evaluate the impact of time wise addition of individual or combined trace metals (zinc and copper) on CHO cell culture performance. Correlations among each factor (experimental parameters) and response variables (changes in cell culture performance) were examined based on their significance and goodness of fit to a partial least square's regression model. The model indicated that zinc concentration and time of addition counter‐influence peak viable cell density and antibody production. Meanwhile, early copper supplementation influenced late‐stage ROS activity in a dose‐dependent manner likely by alleviating cellular oxidative stress. Regression coefficients indicated that combined metal addition had less significant impact on titer and specific productivity compared to zinc addition alone, although titer increased the most under combined metal addition. Glycan analysis showed that combined metal addition reduced galactosylation to a greater extent than single metals when supplemented during the early growth phase. A validation experiment was performed to confirm the validity of the regression model by testing an optimized setpoint of metal supplement time and concentration to improve protein productivity.
Free, publicly-accessible full text available November 1, 2024 -
Abstract A depolymerizable vitrimer that allows both reprocessability and monomer recovery by a simple and scalable one‐pot two‐step synthesis of vitrimers from cyclic lactones is reported. Biobased
δ ‐valerolactone with alkyl substituents (δ ‐lactone) has low ceiling temperature; thus, their ring‐opening‐polymerized aliphatic polyesters are capable of depolymerizing back to monomers. In this work, the amorphous poly(δ ‐lactone) is solidified into an elastomer (i.e.,δ ‐lactone vitrimer) by a vinyl ether cross‐linker with dynamic acetal linkages, giving the merits of reprocessing and healing. Thermolysis of the bulkδ ‐lactone vitrimer at 200 °C can recover 85–90 wt% of the material, allowing reuse without losing value and achieving a successful closed‐loop life cycle. It further demonstrates that the new vitrimer has excellent properties, with the potential to serve as a biobased and sustainable replacement of conventional soft elastomers for various applications such as lenses, mold materials, soft robots, and microfluidic devices. -
Abstract Trace metals play a critical role in the development of culture media used for the production of therapeutic proteins. Iron has been shown to enhance the productivity of monoclonal antibodies during Chinese hamster ovary (CHO) cell culture. However, the redox activity and pro‐oxidant behavior of iron may also contribute toward the production of reactive oxygen species (ROS). In this work, we aim to clarify the influence of trace iron by examining the relationship between iron supplementation to culture media, mAb productivity and glycosylation, and oxidative stress interplay within the cell. Specifically, we assessed the impacts of iron supplementation on (a) mAb production and glycosylation; (b) mitochondria‐generated free hydroxyl radicals (ROS); (c) the cells ability to store energy during oxidative phosphorylation; and (d) mitochondrial iron concentration. Upon the increase of iron at inoculation, CHO cells maintained a capacity to rebound from iron‐induced viability lapses during exponential growth phase and improved mAb productivity and increased mAb galactosylation. Fluorescent labeling of the mitochondrial hydroxyl radical showed enhanced environments of oxidative stress upon iron supplementation. Additional labeling of active mitochondria indicated that, despite the enhanced production of ROS in the mitochondria, mitochondrial membrane potential was minimally impacted. By replicating iron treatments during seed train passaging, the CHO cells were observed to adapt to the shock of iron supplementation prior to inoculation. Results from these experiments demonstrate that CHO cells have the capacity to adapt to enhanced environments of oxidative stress and improve mAb productivity and mAb galactosylation with minimal perturbations to cell culture.