skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolic engineering of Bcat1, Adh5 and Hahdb towards controlling metabolic inhibitors and improving performance in CHO cell-cultures
Award ID(s):
2100075
PAR ID:
10522426
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Biochemical Engineering Journal
Volume:
206
Issue:
C
ISSN:
1369-703X
Page Range / eLocation ID:
109282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metabolic scaling theory has been pivotal in formalizing the expected energy expenditures across populations as a function of body size. Coexistence theory has provided a mathematization of the environmental conditions compatible with multispecies coexistence. Yet, it has been challenging to explain how observed community‐wide patterns, such as the inverse relationship between population abundance density and body size, can be unified under both theories. Here, we provide the foundation for a tractable, scalable, and extendable framework to study the coexistence of resource‐mediated competing populations as a function of their body size. For a given thermal domain and response, this integration reveals that the metabolically predicted 1/4 power dependence of carrying capacity of biomass density on body size can be understood as the average distribution of carrying capacities across feasible environmental conditions, especially for large communities. In line with empirical observations, our integration predicts that such average distribution leads to communities in which population biomass densities at equilibrium are independent from body size, and consequently, population abundance densities are inversely related to body size. This integration opens new opportunities to increase our understanding of how metabolic scaling relationships at the population level can shape processes at the community level under changing environments. 
    more » « less
  2. null (Ed.)
    Metabolic models have been proven to be useful tools in system biology and have been successfully applied to various research fields in a wide range of organisms. A relatively complete metabolic network is a prerequisite for deriving reliable metabolic models. The first step in constructing metabolic network is to harmonize compounds and reactions across different metabolic databases. However, effectively integrating data from various sources still remains a big challenge. Incomplete and inconsistent atomistic details in compound representations across databases is a very important limiting factor. Here, we optimized a subgraph isomorphism detection algorithm to validate generic compound pairs. Moreover, we defined a set of harmonization relationship types between compounds to deal with inconsistent chemical details while successfully capturing atom-level characteristics, enabling a more complete enabling compound harmonization across metabolic databases. In total, 15,704 compound pairs across KEGG (Kyoto Encyclopedia of Genes and Genomes) and MetaCyc databases were detected. Furthermore, utilizing the classification of compound pairs and EC (Enzyme Commission) numbers of reactions, we established hierarchical relationships between metabolic reactions, enabling the harmonization of 3856 reaction pairs. In addition, we created and used atom-specific identifiers to evaluate the consistency of atom mappings within and between harmonized reactions, detecting some consistency issues between the reaction and compound descriptions in these metabolic databases. 
    more » « less
  3. Shank, Elizabeth Anne (Ed.)
    Half of the Earth’s annual primary production is carried out by phytoplankton in the surface ocean. However, this metabolic activity is heavily impacted by heterotrophic bacteria, which dominate the transformation of organic matter released from phytoplankton. 
    more » « less