skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liang, Qianlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 27, 2025
  2. Traditionally, multi-tenant cloud and edge platforms use fair-share schedulers to fairly multiplex resources across applications. These schedulers ensure applications receive processing time proportional to a configurable share of the total time. Unfortunately, enforcing time-fairness across applications often violates energy-fairness, such that some applications consume more than their fair share of energy. This occurs because applications either do not fully utilize their resources or operate at a reduced frequency/voltage during their time-slice. The problem is particularly acute for machine learning (ML) applications using GPUs, where model size largely dictates utilization and energy usage. Enforcing energy-fairness is also important since energy is a costly and limited resource. For example, in cloud platforms, energy dominates operating costs and is limited by the power delivery infrastructure, while in edge platforms, energy is often scarce and limited by energy harvesting and battery constraints. To address the problem, we define the notion of Energy-Time Fairness (ETF), which enables a configurable tradeoff between energy and time fairness, and then design a scheduler that enforces it. We show that ETF satisfies many well-accepted fairness properties. ETF and the new tradeoff it offers are important, as some applications, especially ML models, are time/latency-sensitive and others are energy-sensitive. Thus, while enforcing pure energy-fairness starves time/latency-sensitive applications (of time) and enforcing pure time-fairness starves energy-sensitive applications (of energy), ETF is able to mind the gap between the two. We implement an ETF scheduler, and show that it improves fairness by up to 2x, incentivizes energy efficiency, and exposes a configurable knob to operate between energy- and time-fairness. 
    more » « less
    Free, publicly-accessible full text available December 6, 2024
  3. Traditionally, multi-tenant cloud and edge platforms use fair-share schedulers to fairly multiplex resources across applications. These schedulers ensure applications receive processing time proportional to a configurable share of the total time. Unfortunately, enforcing time-fairness across applications often violates energy-fairness, such that some applications consume more than their fair share of energy. This occurs because applications either do not fully utilize their resources or operate at a reduced frequency/voltage during their time-slice. The problem is particularly acute for machine learning (ML) applications using GPUs, where model size largely dictates utilization and energy usage. Enforcing energy-fairness is also important since energy is a costly and limited resource. For example, in cloud platforms, energy dominates operating costs and is limited by the power delivery infrastructure, while in edge platforms, energy is often scarce and limited by energy harvesting and battery constraints. To address the problem, we define the notion of Energy-Time Fairness (ETF), which enables a configurable tradeoff between energy and time fairness, and then design a scheduler that enforces it. We show that ETF satisfies many well-accepted fairness properties. ETF and the new tradeoff it offers are important, as some applications, especially ML models, are time/latency-sensitive and others are energy-sensitive. Thus, while enforcing pure energy-fairness starves time/latency-sensitive applications (of time) and enforcing pure time-fairness starves energy-sensitive applications (of energy), ETF is able to mind the gap between the two. We implement an ETF scheduler, and show that it improves fairness by up to 2x, incentivizes energy efficiency, and exposes a configurable knob to operate between energy- and time-fairness. 
    more » « less
    Free, publicly-accessible full text available December 6, 2024
  4. Cloud platforms are increasing their emphasis on sustainability and reducing their operational carbon footprint. A common approach for reducing carbon emissions is to exploit the temporal flexibility inherent to many cloud workloads by executing them in periods with the greenest energy and suspending them at other times. Since such suspend-resume approaches can incur long delays in job completion times, we present a new approach that exploits the elasticity of batch workloads in the cloud to optimize their carbon emissions. Our approach is based on the notion of carbon scaling, similar to cloud autoscaling, where a job dynamically varies its server allocation based on fluctuations in the carbon cost of the grid's energy. We develop a greedy algorithm for minimizing a job's carbon emissions via carbon scaling that is based on the well-known problem of marginal resource allocation. We implement a CarbonScaler prototype in Kubernetes using its autoscaling capabilities and an analytic tool to guide the carbon-efficient deployment of batch applications in the cloud. We then evaluate CarbonScaler using real-world machine learning training and MPI jobs on a commercial cloud platform and show that it can yield i) 51% carbon savings over carbon-agnostic execution; ii) 37% over a state-of-the-art suspend-resume policy; and iii) 8 over the best static scaling policy.

     
    more » « less
    Free, publicly-accessible full text available December 7, 2024
  5. Model-serving systems expose machine learning (ML) models to applications programmatically via a high-level API. Cloud plat- forms use these systems to mask the complexities of optimally managing resources and servicing inference requests across multi- ple applications. Model serving at the edge is now also becoming increasingly important to support inference workloads with tight latency requirements. However, edge model serving differs substan- tially from cloud model serving in its latency, energy, and accuracy constraints: these systems must support multiple applications with widely different latency and accuracy requirements on embedded edge accelerators with limited computational and energy resources. To address the problem, this paper presents Dělen,1 a flexible and adaptive model-serving system for multi-tenant edge AI. Dělen exposes a high-level API that enables individual edge applications to specify a bound at runtime on the latency, accuracy, or energy of their inference requests. We efficiently implement Dělen using conditional execution in multi-exit deep neural networks (DNNs), which enables granular control over inference requests, and evalu- ate it on a resource-constrained Jetson Nano edge accelerator. We evaluate Dělen flexibility by implementing state-of-the-art adapta- tion policies using Dělen’s API, and evaluate its adaptability under different workload dynamics and goals when running single and multiple applications. 
    more » « less
  6. Since emerging edge applications such as Internet of Things (IoT) analytics and augmented reality have tight latency constraints, hardware AI accelerators have been recently proposed to speed up deep neural network (DNN) inference run by these applications. Resource-constrained edge servers and accelerators tend to be multiplexed across multiple IoT applications, introducing the potential for performance interference between latency-sensitive workloads. In this article, we design analytic models to capture the performance of DNN inference workloads on shared edge accelerators, such as GPU and edgeTPU, under different multiplexing and concurrency behaviors. After validating our models using extensive experiments, we use them to design various cluster resource management algorithms to intelligently manage multiple applications on edge accelerators while respecting their latency constraints. We implement a prototype of our system in Kubernetes and show that our system can host 2.3× more DNN applications in heterogeneous multi-tenant edge clusters with no latency violations when compared to traditional knapsack hosting algorithms. 
    more » « less
  7. null (Ed.)
    Edge computing has emerged as a popular paradigm for supporting mobile and IoT applications with low latency or high bandwidth needs. The attractiveness of edge computing has been further enhanced due to the recent availability of special-purpose hardware to accelerate specific compute tasks, such as deep learning inference, on edge nodes. In this paper, we experimentally compare the benefits and limitations of using specialized edge systems, built using edge accelerators, to more traditional forms of edge and cloud computing. Our experimental study using edge-based AI workloads shows that today's edge accelerators can provide comparable, and in many cases better, performance, when normalized for power or cost, than traditional edge and cloud servers. They also provide latency and bandwidth benefits for split processing, across and within tiers, when using model compression or model splitting, but require dynamic methods to determine the optimal split across tiers. We find that edge accelerators can support varying degrees of concurrency for multi-tenant inference applications, but lack isolation mechanisms necessary for edge cloud multi-tenant hosting. 
    more » « less