skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Liang, Shuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 29, 2024
  3. Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices. 
    more » « less

    We develop a method to calibrate u-band photometry based on the observed colour of blue Galactic halo stars. The Galactic halo stars belong to an old stellar population of the Milky Way and have relatively low metallicity. The ‘blue tip’ of the halo population – the main sequence turn-off (MSTO) stars – is known to have a relatively uniform intrinsic edge u-g colour with only slow spatial variation. In SDSS data, the observed variation is correlated with Galactic Latitude, which we attribute to contamination by higher metallicity disc stars and fit with an empirical curve. This curve can then be used to calibrate u-band imaging if g-band imaging of matching depth is available. Our approach can be applied to single-field observations at |b| > 30°, and removes the need for standard star observations or overlap with calibrated u-band imaging. We include in our method the calibration of g-band data with ATLAS-Refcat2. We test our approach on stars in KiDS DR 4, ATLAS DR 4, and DECam imaging from the NOIRLab Source Catalog (NSC DR2), and compare our calibration with SDSS. For this process, we use synthetic magnitudes to derive the colour equations between these data sets, in order to improve zero-point accuracy. We find an improvement for all data sets, reaching a zero-point precision of 0.016 mag for KiDS (compared to the original 0.033 mag), 0.020 mag for ATLAS (originally 0.027 mag), and 0.016 mag for DECam (originally 0.041 mag). Thus, this method alone reaches the goal of 0.02 mag photometric precision in u-band for the Rubin Observatory’s Legacy Survey of Space and Time (LSST).

    more » « less
  5. Because of their enhanced quantum confinement, colloidal two-dimensional Ruddlesden–Popper (RP) perovskite nanosheets with a general formula L 2 [ABX 3 ] n −1 BX 4 stand as a promising narrow-wavelength blue-emitting nanomaterial. Despite ample studies on batch synthesis, for RP perovskites to be broadly applied, continuous synthetic routes are needed. Herein, we design and optimize a flow reactor to continuously produce high-quality n = 1 RP perovskite nanoplatelets. The effects of antisolvent composition, reactor tube length, precursor solution injection rate, and antisolvent injection rate on the morphology and optical properties of the nanoplatelets are systematically examined. Our investigation suggests that flow reactors can be employed to synthesize high-quality L 2 PbX 4 perovskite nanoplatelets ( i.e. , n = 1) at rates greater than 8 times that of batch synthesis. Mass-produced perovskite nanoplatelets promise a variety of potential applications in optoelectronics, including light emitting diodes, photodetectors, and solar cells. 
    more » « less
  6. null (Ed.)