skip to main content


Search for: All records

Creators/Authors contains: "Liang, Xiaogan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 2D-layered materials (e.g., graphene and transition metal dichalcogenides) have attracted huge attention due to their unique mechanical and electrical properties. Emerging research efforts, which seek to combine device characterization and high-resolution electron micrography analysis for 2D-layered device features, demand nano/microlithographic techniques capable of producing ordered 2D material patterns on ultrathin membranes with nanoscale thicknesses. However, such membranes are so fragile that most conventional lithographic techniques can be hardly performed on them to generate 2D material patterns. Our previous works have demonstrated that the rubbing-induced site-selective (RISS) deposition method can produce arbitrary 2D semiconductor (e.g., MoS2 and Bi2Se3) patterns on regular device substrates. This fabrication route prevents the vulnerable 2D-layered structures from the detrimental damage introduced by plasma etching and resist-based lithography processes. In this work, we explore the applicability of RISS for directly producing 2D material patterns on nanomembranes. Specifically, this work shows that a polymeric interfacing layer on the rubbing template features, which can effectively prevent stress concentration during the rubbing process, is crucial to successful implementation of RISS processes on nanomembranes. Furthermore, we carried out the mechanics simulation of the Von Mises stress and pressure distribution on the RISS-processed membrane to identify the optimal rubbing load, which can generate sufficient triboelectric charge for material deposition but no damage to the membrane. Using this approach, we have successfully demonstrated the deposition of Bi2Se3 patterns on 25 nm SiOx nanomembranes and high-resolution transmission electron micrography characterization of the crystallographic structures.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Herein we report the assessment of the effects of shockwave (SW) impacts on adult rat hippocampal progenitor cell (AHPC) neurospheres (NSs), which are used as in vitro brain models, for enhancing our understanding of the mechanisms of traumatic brain injury (TBI). The assessment has been achieved by using culture dishes and a new microchip. The microchip allows the chemicals released from the brain models cultured inside the cell culture chamber under SW impacts to diffuse to the nano sensors in adjacent sensor chambers through built-in diffusion barriers, which are used to prevent the cells from entering the sensor chambers, thereby mitigating the biofouling issues of the sensor surface. Experiments showed the negative impact of the SW on the viability, proliferation, and differentiation of the cells within the NSs. A qPCR gene expression analysis was performed and appeared to confirm some of the immunocytochemistry (ICC) results. Finally, we demonstrated that the microchip can be used to monitor lactate dehydrogenase (LDH) released from the AHPC-NSs subjected to SW impacts. As expected, LDH levels changed when AHPC-NSs were injured by SW impacts, verifying this chip can be used for assessing the degrees of injuries of AHPC-NSs by monitoring LDH levels. Taken together, these results suggest the feasibility of using the chip to better understand the interactions between SW impacts and in vitro brain models, paving a way for potentially establishing in vitro TBI models on a chip. 
    more » « less
    Free, publicly-accessible full text available July 3, 2025
  3. Memristors based on 2D semiconductors such as MoS2 and its derivative materials exhibit analog switching behaviors capable of emulating some synaptic functions, including short-term plasticity, long-term potentiation, and spike-time-dependent-plasticity. Additional investigation is needed to realize reliable control of such synaptic behaviors for practical device implementation. To meet this scientific need, we fabricated MoS2-based memristors and studied their paired-pulse facilitation (PPF) and long-term memory characteristics under different pulse programming settings. This research has provided a guideline for identifying the programming settings for different neuromorphic processes. For example, a specific setting resulting in PPF > 30% and long-term conductance change < 20% has been identified to be suited for processing real-time temporal information. Furthermore, this research also indicates that the MoS2 memristor keeps having an almost constant relative change in conductance but greatly enhanced drive current level under laser illumination. This behavior can enable an easy integration of such memristive devices with state-of-the-art controller circuits for practice neuromorphic control applications.

     
    more » « less
  4. null (Ed.)
  5. Along with the increasing interest in MoS 2 as a promising electronic material, there is also an increasing demand for nanofabrication technologies that are compatible with this material and other relevant layered materials. In addition, the development of scalable nanofabrication approaches capable of directly producing MoS 2 device arrays is an imperative task to speed up the design and commercialize various functional MoS 2 -based devices. The desired fabrication methods need to meet two critical requirements. First, they should minimize the involvement of resist-based lithography and plasma etching processes, which introduce unremovable contaminations to MoS 2 structures. Second, they should be able to produce MoS 2 structures with in-plane or out-of-plane edges in a controlled way, which is key to increase the usability of MoS 2 for various device applications. Here, we introduce an inkjet-defined site-selective (IDSS) method that meets these requirements. IDSS includes two main steps: (i) inkjet printing of microscale liquid droplets that define the designated sites for MoS 2 growth, and (ii) site-selective growth of MoS 2 at droplet-defined sites. Moreover, IDSS is capable of generating MoS 2 with different structures. Specifically, an IDSS process using deionized (DI) water droplets mainly produces in-plane MoS 2 features, whereas the processes using graphene ink droplets mainly produce out-of-plane MoS 2 features rich in exposed edges. Using out-of-plane MoS 2 structures, we have demonstrated the fabrication of miniaturized on-chip lithium ion batteries, which exhibit reversible lithiation/delithiation capacity. This IDSS method could be further expanded as a scalable and reliable nanomanufacturing method for generating miniaturized on-chip energy storage devices. 
    more » « less
  6. We report on system integration of plasmonic nanoparticles and a few-layered molybdenum disulfide (M0S2) photoconductive nanochannel sheet on a silicon substrate. Plasma-assisted electrostatic bonding and van der Waals bonding are employed to create a high-sensitivity photoelectronic biosensor for immunological analysis. 
    more » « less