Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Free, publicly-accessible full text available November 15, 2025
- 
            Abstract This study explores the impact of coupling cumulus and planetary boundary layer (PBL) parameterizations on diurnal precipitation forecasting during the plum rainy season in Jiangsu Province, China, using a double grid‐nesting approach. Results show that coherent coupling of cumulus (only in the 15 km grid outer domain [O]) and PBL parameterizations leads to improved forecasting of diurnal variations in the morning, afternoon, and the evening. Increasing the frequency of the Kain‐Fritsch (KF) cumulus scheme in [O] enhances subgrid precipitation while reducing grid‐scale precipitation, resulting in a more accurate representation of daytime convective activities and a reduction in over‐forecasting of evening valley and early‐morning precipitation. Additionally, coupling a suitable PBL scheme mitigates the overpredicted afternoon peak by facilitating turbulent mixing to penetrate higher altitudes with a thicker layer, thereby reducing instability energy accumulation. A higher KF frequency in [O] retains less low tropospheric moisture, reducing moisture convergence into the 1 km grid inner domain [I] and decreasing overpredicted daytime precipitation in [I]. Various PBL schemes produce distinct vertical distributions of turbulent moisture and heat transport, impacting convection and precipitation in [I] resolved by cloud microphysics processes. The coherent coupling of these parameterizations maintains a balanced supply of convective energy and water vapor, significantly improving diurnal precipitation forecasts in [I]. Isolating these parameterizations between nested grids may undermine this improvement.more » « less
- 
            Although the Soil and Water Assessment Tool (SWAT) model has been widely used to assess the environmental impacts of growing perennial grasses for bioenergy production, its utility is limited by not explicitly accounting for shoot and root biomass development. In this study, we integrated the DAYCENT model's grass growth algorithms into SWAT (SWAT–GRASSD) and further modified it by considering the impact of leaf area index (LAI) on potential biomass production (SWAT–GRASSM). Based on testing at eight sites in the US Midwest, we found that SWAT–GRASSM generally outperformed SWAT and SWAT–GRASSD in simulating switchgrass biomass yield and the seasonal development of LAI. Additionally, SWAT–GRASSM can more realistically represent root development, which is key for the allocation of accumulated biomass and nutrients between aboveground and belowground biomass pools. These improvements are critical for credible assessment of agronomic and environmental impacts of growing perennial grasses for biomass production.more » « less
- 
            Abstract U.S. rice paddies, critical for food security, are increasingly contributing to non‐CO2greenhouse gas (GHG) emissions like methane (CH4) and nitrous oxide (N2O). Yet, the full assessment of GHG balance, considering trade‐offs between soil organic carbon (SOC) change and non‐CO2GHG emissions, is lacking. Integrating an improved agroecosystem model with a meta‐analysis of multiple field studies, we found that U.S. rice paddies were the rapidly growing net GHG emission sources, increased 138% from 3.7 ± 1.2 Tg CO2eq yr−1in the 1960s to 8.9 ± 2.7 Tg CO2eq yr−1in the 2010s. CH4, as the primary contributor, accounted for 10.1 ± 2.3 Tg CO2eq yr−1in the 2010s, alongside a notable rise in N2O emissions by 0.21 ± 0.03 Tg CO2eq yr−1. SOC change could offset 14.0% (1.45 ± 0.46 Tg CO2eq yr−1) of the climate‐warming effects of soil non‐CO2GHG emissions in the 2010s. This escalation in net GHG emissions is linked to intensified land use, increased atmospheric CO2, higher synthetic nitrogen fertilizer and manure application, and climate change. However, no/reduced tillage and non‐continuous irrigation could reduce net soil GHG emissions by approximately 10% and non‐CO2GHG emissions by about 39%, respectively. Despite the rise in net GHG emissions, the cost of achieving higher rice yields has decreased over time, with an average of 0.84 ± 0.18 kg CO2eq ha−1emitted per kilogram of rice produced in the 2010s. The study suggests the potential for significant GHG emission reductions to achieve climate‐friendly rice production in the U.S. through optimizing the ratio of synthetic N to manure fertilizer, reducing tillage, and implementing intermittent irrigation.more » « less
- 
            Abstract Ongoing climate variability and change are increasing the burden of diarrhoeal disease worldwide. Meaningful early warning systems with adequate lead times (weeks to months) are needed to guide public health decision–making and enhance community resilience against health threats posed by climate change. Toward this goal, we trained various machine-learning models to predict diarrhoeal disease rates in Nepal (2002–2014), Taiwan (2008–2019), and Vietnam (2000–2015) using temperature, precipitation, previous disease rates, and El Niño Southern Oscillation phases. We also compared the performance of shallow time-series neural network (NN), Random Forest Regressor, artificial nn, gradient boosting regressor, and long short-term memory–based methods for their effectiveness in predicting diarrhoeal disease burden across multiple countries. We evaluated model performance using a test dataset and assessed the accuracy of predicted diarrhoeal disease incidence rates for the last year of available data in each district. Our results suggest that even in the absence of the most recent disease surveillance data, a likely scenario in most low- and middle-income countries, our NN-based early warning system using historical data performs reasonably well. However, future studies are needed to perform prospective evaluations of such early warning systems in real-world settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
