skip to main content

Search for: All records

Creators/Authors contains: "Liang, Xin-Zhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although the Soil and Water Assessment Tool (SWAT) model has been widely used to assess the environmental impacts of growing perennial grasses for bioenergy production, its utility is limited by not explicitly accounting for shoot and root biomass development. In this study, we integrated the DAYCENT model's grass growth algorithms into SWAT (SWAT–GRASSD) and further modified it by considering the impact of leaf area index (LAI) on potential biomass production (SWAT–GRASSM). Based on testing at eight sites in the US Midwest, we found that SWAT–GRASSM generally outperformed SWAT and SWAT–GRASSD in simulating switchgrass biomass yield and the seasonal development of LAI. Additionally, SWAT–GRASSM can more realistically represent root development, which is key for the allocation of accumulated biomass and nutrients between aboveground and belowground biomass pools. These improvements are critical for credible assessment of agronomic and environmental impacts of growing perennial grasses for biomass production. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation, 2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cirrus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely. Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms.

    more » « less
  3. Abstract

    Most climate models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer pronounced warm and dry summer biases in the central United States (CUS), even in high-resolution simulations. We found that the cloud base definition in the cumulus parameterization was the dominant factor determining the spread of the biases among models and those defining cloud base at the lifting condensation level (LCL) performed the best. To identify the underlying mechanisms, we developed a physically based analytical bias model (ABM) to capture the key feedback processes of land–atmosphere coupling. The ABM has significant explanatory power, capturing 80% variance of temperature and precipitation biases among all models. Our ABM analysis via counterfactual experiments indicated that the biases are attributed mostly by surface downwelling longwave radiation errors and second by surface net shortwave radiation errors, with the former 2–5 times larger. The effective radiative forcing from these two errors as weighted by their relative contributions induces runaway temperature and precipitation feedbacks, which collaborate to cause CUS summer warm and dry biases. The LCL cumulus reduces the biases through two key mechanisms: it produces more clouds and less precipitable water, which reduce radiative energy input for both surface heating and evapotranspiration to cause a cooler and wetter soil; it produces more rainfall and wetter soil conditions, which suppress the positive evapotranspiration–precipitation feedback to damp the warm and dry bias coupling. Most models using non-LCL schemes underestimate both precipitation and cloud amounts, which amplify the positive feedback to cause significant biases.

    more » « less
  4. Abstract

    Climate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, and reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis.

    more » « less
  5. Remotely sensed hydrologic variables, in conjunction with streamflow data, have been increasingly used to conduct multivariable calibration of hydrologic model parameters. Here, we calibrated the Soil and Water Assessment Tool (SWAT) model using different combinations of streamflow and remotely sensed hydrologic variables, including Atmosphere–Land Exchange Inverse (ALEXI) Evapotranspiration (ET), Moderate Resolution Imaging Spectroradiometer (MODIS) ET, and Soil MERGE (SMERGE) soil moisture. The results show that adding remotely sensed ET and soil moisture to the traditionally used streamflow for model calibration can impact the number and values of parameters sensitive to hydrologic modeling, but it does not necessarily improve the model performance. However, using remotely sensed ET or soil moisture data alone led to deterioration in model performance as compared with using streamflow only. In addition, we observed large discrepancies between ALEXI or MODIS ET data and the choice between these two datasets for model calibration can have significant implications for the performance of the SWAT model. The use of different combinations of streamflow, ET, and soil moisture data also resulted in noticeable differences in simulated hydrologic processes, such as runoff, percolation, and groundwater discharge. Finally, we compared the performance of SWAT and the SWAT-Carbon (SWAT-C) model under different multivariate calibration setups, and these two models exhibited pronounced differences in their performance in the validation period. Based on these results, we recommend (1) the assessment of various remotely sensed data (when multiple options available) for model calibration before choosing them for complementing the traditionally used streamflow data and (2) that different model structures be considered in the model calibration process to support robust hydrologic modeling. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  6. Despite the extensive application of the Soil and Water Assessment Tool (SWAT) for water quality modeling, its ability to simulate soil inorganic nitrogen (SIN) dynamics in agricultural landscapes has not been directly verified. Here, we improved and evaluated the SWAT–Carbon (SWAT-C) model for simulating long-term (1984–2020) dynamics of SIN for 40 cropping system treatments in the U.S. Midwest. We added one new nitrification and two new denitrification algorithms to the default SWAT version, resulting in six combinations of nitrification and denitrification options with varying performance in simulating SIN. The combination of the existing nitrification method in SWAT and the second newly added denitrification method performed the best, achieving R, NSE, PBIAS, and RMSE of 0.63, 0.29, −4.7 %, and 16.0 kg N ha−1, respectively. This represents a significant improvement compared to the existing methods. In general, the revised SWAT-C model's performance was comparable to or better than other agroecosystem models tested in previous studies for assessing the availability of SIN for plant growth in different cropping systems. Sensitivity analysis showed that parameters controlling soil organic matter decomposition, nitrification, and denitrification were most sensitive for SIN simulation. Using SWAT-C for improved prediction of plant-available SIN is expected to better inform agroecosystem management decisions to ensure crop productivity while minimizing the negative environmental impacts caused by fertilizer application. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  7. Groundwater use for irrigation has a major influence on agricultural productivity and local water resources. This study evaluated the groundwater irrigation schemes, SWAT auto-irrigation scheduling based on plant water stress (Auto-Irr), and prescribed irrigation based on well pumping rates in MODFLOW (Well-Irr), in the U.S. Northern High Plains (NHP) aquifer using coupled SWAT-MODFLOW model simulations for the period 1982–2008. Auto-Irr generally performed better than Well-Irr in simulating groundwater irrigation volume (reducing the mean bias from 86 to −30%) and groundwater level (reducing the normalized root-mean-square-error from 13.55 to 12.47%) across the NHP, as well as streamflow interannual variations at two stations (increasing NSE from 0.51, 0.51 to 0.55, 0.53). We also examined the effects of groundwater irrigation on the water cycle. Based on simulation results from Auto-Irr, historical irrigation led to significant recharge along the Elkhorn and Platte rivers. On average over the entire NHP, irrigation increased surface runoff, evapotranspiration, soil moisture and groundwater recharge by 21.3%, 4.0%, 2.5% and 1.5%, respectively. Irrigation improved crop water productivity by nearly 27.2% for corn and 23.8% for soybean. Therefore, designing sustainable irrigation practices to enhance crop productivity must consider both regional landscape characteristics and downstream hydrological consequences. 
    more » « less