skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancing the SWAT model to simulate perennial bioenergy crops: A case study on switchgrass growth
Although the Soil and Water Assessment Tool (SWAT) model has been widely used to assess the environmental impacts of growing perennial grasses for bioenergy production, its utility is limited by not explicitly accounting for shoot and root biomass development. In this study, we integrated the DAYCENT model's grass growth algorithms into SWAT (SWAT–GRASSD) and further modified it by considering the impact of leaf area index (LAI) on potential biomass production (SWAT–GRASSM). Based on testing at eight sites in the US Midwest, we found that SWAT–GRASSM generally outperformed SWAT and SWAT–GRASSD in simulating switchgrass biomass yield and the seasonal development of LAI. Additionally, SWAT–GRASSM can more realistically represent root development, which is key for the allocation of accumulated biomass and nutrients between aboveground and belowground biomass pools. These improvements are critical for credible assessment of agronomic and environmental impacts of growing perennial grasses for biomass production.  more » « less
Award ID(s):
1639327
PAR ID:
10483329
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Modeling & Software
Date Published:
Journal Name:
Environmental Modelling & Software
Volume:
170
Issue:
C
ISSN:
1364-8152
Page Range / eLocation ID:
105834
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zhang, Wen-Hao (Ed.)
    Abstract Aims Long-term determination of root biomass production upon land-use conversion to biofuel crops is rare. To assess land-use legacy influences on belowground biomass accumulation, we converted 22-year-old Conservation Reserve Program (CRP) grasslands and 50+-year-old agricultural (AGR) lands to corn (C), switchgrass (Sw) and restored prairie (Pr) biofuel crops. We maintained one CRP grassland as a reference (Ref). We hypothesized that land-use history and crop type have significant effects on root density, with perennial crops on CRP grasslands having a higher root biomass productivity, while corn grown on former agricultural lands produce the lowest root biomass. Methods The ingrowth core method was used to determine in situ ingrowth root biomass, alongside measurements of aboveground net primary productivity (ANPP). Ancillary measurements, including air temperature, growing season length and precipitation were used to examine their influences on root biomass production. Important Findings Root biomass productivity was the highest in unconverted CRP grassland (1716 g m−2 yr−1) and lowest in corn fields (526 g m−2 yr−1). All perennial sites converted from CRP and AGR lands had lower root biomass and ANPP in the first year of planting but peaked in 2011 for switchgrass and a year later for restored prairies. Ecosystem stability was higher in restored prairies (AGR-Pr: 4.3 ± 0.11; CRP-Pr: 4.1 ± 0.10), with all monocultures exhibiting a lower stability. Root biomass production was positively related to ANPP (R2 = 0.40). Overall, attention should be given to root biomass accumulation in large-scale biofuel production as it is a major source of carbon sequestration. 
    more » « less
  2. Abstract Biofuel crops, including annuals such as maize (Zea maysL.), soybean [Glycine max(L.) Merr.], and canola (Brassica napusL.), as well as high‐biomass perennial grasses such as miscanthus (Miscanthus×giganteusJ.M. Greef & Deuter ex Hodkinson & Renvoiz), are candidates for sustainable alternative energy sources. However, large‐scale conversion of croplands to perennial biofuel crops could have substantial impacts on regional water, nutrient, and C cycles due to the longer growing seasons and differences in rooting systems compared with most annual crops. However, due to the limited tools available to nondestructively study the spatiotemporal patterns of root water uptake in situ at field scales, these differences in crop water use are not well known. Geophysical imaging tools such as electrical resistivity (ER) reveal changes in water content in the soil profile. In this study, we demonstrate the use of a novel coupled hydrogeophysical approach with both time domain reflectometry soil water content and ER measurements to compare root water uptake and soil properties of an annual crop rotation with the perennial grass miscanthus, across three growing seasons (2009–2011) in southwest Michigan, USA. We estimated maximum root depths to be between 1.2 and 2.2 m, with the vertical distribution of roots being notably deeper in 2009 relative to 2010 and 2011, likely due to the drought conditions during that first year. Modeled cumulative ET of both crops was underestimated (2–34%) relative to estimates obtained from soil water drawdown in prior studies but was found to be greater in the perennial grass than the annual crops, despite shallower modeled rooting depths in 2010 and 2011. 
    more » « less
  3. Abstract Multiyear periods (≥4 years) of extreme rainfall are increasing in frequency as climate continues to change, yet there is little understanding of how rainfall amount and heterogeneity in biophysical properties affect state changes in a sequence of wet and dry periods. Our objective was to examine the importance of rainfall periods, their legacies, and vegetation and soil properties to either the persistence of woody plants or a shift toward perennial grass dominance and a state reversal. We examined a 28‐year record of rainfall consisting of a sequence of multiyear periods (average, dry, wet, dry, average) for four ecosystem types in the Jornada Basin. We analyzed relationships between above ground net primary production (ANPP) and rainfall for three plant functional groups that characterize alternative states (perennial grasses, other herbaceous plants, dominant shrubs). A multimodel comparison was used to determine the relative importance of rainfall, soil, and vegetation properties. For perennial grasses, the greatest mean ANPP in mesquite‐ and tarbush‐dominated shrublands occurred in the wet period and in the dry period following the wet period in grasslands. Legacy effects in grasslands were asymmetric, where the lowest production was found in a dry period following an average period, and the greatest production occurred in a dry period following a wet period. For other herbaceous plants, in contrast, the greatest ANPP occurred in the wet period. Mesquite was the only dominant shrub species with a significant positive response in the wet period. Rainfall amount was a poor predictor of ANPP for each functional group when data from all periods were combined. Initial herbaceous biomass at the plant scale, patch‐scale biomass, and soil texture at the landscape scale improved the predictive relationships of ANPP compared with rainfall alone. Under future climate, perennial grass production is expected to benefit the most from wet periods compared with other functional groups with continued high grass production in subsequent dry periods that can shift (desertified) shrublands toward grasslands. The continued dominance by shrubs will depend on the effects that rainfall has on perennial grasses and the sequence of high‐ and low‐rainfall periods rather than the direct effects of rainfall on shrub production. 
    more » « less
  4. ABSTRACT Perennial grass energy crop production is necessary for the successful and sustainable expansion of bioenergy in North America. Numerous environmental advantages are associated with perennial grass cropping systems, including their potential to promote soil carbon accrual. Despite growing research interest in the abiotic and biotic factors driving soil carbon cycling within perennial grass cropping systems, soil fauna remain a critical yet largely unexplored component of these ecosystems. By regulating microbial activity and organic matter decomposition dynamics, soil fauna influence soil carbon stability with potentially significant implications for soil carbon accrual. We begin by reviewing the diverse, predominantly indirect effects of soil fauna on soil carbon dynamics in the context of perennial grass cropping systems. Since the impacts of perennial grass energy crop production on soil fauna will mediate their potential contributions to soil carbon accrual, we then discuss how perennial grass energy crop traits, diversity, and management influence soil fauna community structure and activity. We assert that continued research into the interactions of soil fauna, microbes, and organic matter will be important for advancing our understanding of soil carbon dynamics in perennial grass cropping systems. Furthermore, explicit consideration of soil faunal effects on soil carbon can improve our ability to predict changes in soil carbon following perennial grass cropping system establishment. We conclude by addressing the major knowledge gaps that should be prioritized to better understand and model the complex connections between perennial grass bioenergy systems, soil fauna, and carbon accrual. 
    more » « less
  5. Abstract Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials. 
    more » « less