skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, Junyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Estimating the unknown reward functions driving agents' behavior is a central challenge in inverse games and reinforcement learning. This paper introduces a unified framework for reward function recovery in two-player zero-sum matrix games and Markov games with entropy regularization. Given observed player strategies and actions, we aim to reconstruct the underlying reward functions. This task is challenging due to the inherent ambiguity of inverse problems, the non-uniqueness of feasible rewards, and limited observational data coverage. To address these challenges, we establish reward function identifiability using the quantal response equilibrium (QRE) under linear assumptions. Building on this theoretical foundation, we propose an algorithm to learn reward from observed actions, designed to capture all plausible reward parameters by constructing confidence sets. Our algorithm works in both static and dynamic settings and is adaptable to incorporate other methods, such as Maximum Likelihood Estimation (MLE). We provide strong theoretical guarantees for the reliability and sample-efficiency of our algorithm. Empirical results demonstrate the framework’s effectiveness in accurately recovering reward functions across various scenarios, offering new insights into decision-making in competitive environments. 
    more » « less
    Free, publicly-accessible full text available August 15, 2026