Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gagliardi, Laura; Tiwary, Pratyush (Ed.)We propose a method to compute free-energy differences from nonadiabatic alchemical transformations by using flow-based generative models. The method, nonadiabatic force matching, hinges on estimating the dissipation along an alchemical switching process in terms of a nonadiabatic force field that can be learned through stochastic flow matching. The learned field can be used in conjunction with short-time trajectory data to evaluate upper and lower bounds on the alchemical free energy that variationally converge to the exact value if the field is optimal. Applying the method to evaluate the alchemical free energy of atomistic models shows that it can substantially reduce the simulation cost of a free-energy estimate at a negligible loss of accuracy when compared with thermodynamic integration.more » « lessFree, publicly-accessible full text available November 17, 2026
-
We study diffusion-controlled processes in nonequilibrium steady states, where standard rate theory assumptions break down. Using transition path theory, we generalize the relations between reactive probability fluxes and measures of the rate of the reaction. Stochastic thermodynamics analysis reveals how work constrains the enhancement of rates relative to their equilibrium values. An analytically solvable ion pairing model under a strong electric field illustrates and validates our approach and theory. These findings provide deeper insights into diffusion-controlled reaction dynamics beyond equilibrium.more » « lessFree, publicly-accessible full text available October 14, 2026
-
Free, publicly-accessible full text available April 23, 2026
-
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.more » « less
-
We use a nonequilibrium variational principle to optimize the steady-state, shear-induced interconversion of self-assembled nanoclusters of DNA-coated colloids. Employing this principle within a stochastic optimization algorithm allows us to identify design strategies for functional materials. We find that far-from-equilibrium shear flow can significantly enhance the flux between specific colloidal states by decoupling trade-offs between stability and reactivity required by systems in equilibrium. For isolated nanoclusters, we find nonequilibrium strategies for amplifying transition rates by coupling a given reaction coordinate to the background shear flow. We also find that shear flow can be made to selectively break detailed balance and maximize probability currents by coupling orientational degrees of freedom to conformational transitions. For a microphase consisting of many nanoclusters, we study the flux of colloids hopping between clusters. We find that a shear flow can amplify the flux without a proportional compromise on the microphase structure. This approach provides a general means of uncovering design principles for nanoscale, autonomous, functional materials driven far from equilibrium.more » « less
-
Abstract The reactive uptake of N 2 O 5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N 2 O 5 in water. The free energy profile highlights that N 2 O 5 is selectively adsorbed to the liquid–vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction–diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction–diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N 2 O 5 in more complex solutions.more » « less
An official website of the United States government
