- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Melgar, Diego (2)
-
Bachelot, Loïc (1)
-
Lin, Jiun-Ting (1)
-
Lin, Jiun‐Ting (1)
-
Sahakian, Valerie J. (1)
-
Searcy, Jacob (1)
-
Searcy, Jake (1)
-
Thomas, Amanda (1)
-
Thomas, Amanda M. (1)
-
Toomey, Douglas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Low-frequency earthquakes (LFEs) are small-magnitude earthquakes that are depleted in high-frequency content relative to traditional earthquakes of the same magnitude. These events occur in conjunction with slow slip events (SSEs) and can be used to infer the space and time evolution of SSEs. However, because LFEs have weak signals, and the methods used to identify them are computationally expensive, LFEs are not routinely cataloged in most places. Here, we develop a deep-learning model that learns from an existing LFE catalog to detect LFEs in 14 years of continuous waveform data in southern Vancouver Island. The result shows significant increases in detection rates at individual stations. We associate the detections and locate them using a grid search approach in a 3D regional velocity model, resulting in over 1 million LFEs during the performing period. Our resulting catalog is consistent with a widely used tremor catalog during periods of large-magnitude SSEs. However, there are time periods where it registers far more LFEs than the tremor catalog. We highlight a 16-day period in May 2010, when our model detects nearly 3,000 LFEs, whereas the tremor catalog contains only one tremor detection in the same region. This suggests the possibility of hidden small-magnitude SSEs that are undetected by current approaches. Our approach improves the temporal and spatial resolution of the LFE activities and provides new opportunities to understand deep subduction zone processes in this region.more » « less
-
Lin, Jiun‐Ting; Melgar, Diego; Sahakian, Valerie J.; Thomas, Amanda M.; Searcy, Jacob (, Journal of Geophysical Research: Solid Earth)Abstract Earthquake early warning (EEW) systems aim to forecast the shaking intensity rapidly after an earthquake occurs and send warnings to affected areas before the onset of strong shaking. The system relies on rapid and accurate estimation of earthquake source parameters. However, it is known that source estimation for large ruptures in real‐time is challenging, and it often leads to magnitude underestimation. In a previous study, we showed that machine learning, HR‐GNSS, and realistic rupture synthetics can be used to reliably predict earthquake magnitude. This model, called Machine‐Learning Assessed Rapid Geodetic Earthquake model (M‐LARGE), can rapidly forecast large earthquake magnitudes with an accuracy of 99%. Here, we expand M‐LARGE to predict centroid location and fault size, enabling the construction of the fault rupture extent for forecasting shaking intensity using existing ground motion models. We test our model in the Chilean Subduction Zone with thousands of simulated and five real large earthquakes. The result achieves an average warning time of 40.5 s for shaking intensity MMI4+, surpassing the 34 s obtained by a similar GNSS EEW model. Our approach addresses a critical gap in existing EEW systems for large earthquakes by demonstrating real‐time fault tracking feasibility without saturation issues. This capability leads to timely and accurate ground motion forecasts and can support other methods, enhancing the overall effectiveness of EEW systems. Additionally, the ability to predict source parameters for real Chilean earthquakes implies that synthetic data, governed by our understanding of earthquake scaling, is consistent with the actual rupture processes.more » « less
An official website of the United States government
