Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The nodal-line semiconductor Mn3Si2Te6 is generating enormous excitment due to the recent discovery of a field-driven insulator-to-metal transition and associated colossal magnetoresistance as well as evidence for a new type of quantum state involving chiral orbital currents. Strikingly, these qualities persist even in the absence of traditional Jahn-Teller distortions and double-exchange mechanisms, raising questions about exactly how and why magnetoresistance occurs along with conjecture as to the likely signatures of loop currents. Here, we measured the infrared response of Mn3Si2Te6 across the magnetic ordering and field-induced insulator-to-metal transitions in order to explore colossal magnetoresistance in the absence of Jahn-Teller and double-exchange interactions. Rather than a traditional metal with screened phonons, the field-driven insulator-to-metal transition leads to a weakly metallic state with localized carriers. Our spectral data are fit by a percolation model, providing evidence for electronic inhomogeneity and phase separation. Modeling also reveals a frequency-dependent threshold field for carriers contributing to colossal magnetoresistance which we discuss in terms of polaron formation, chiral orbital currents, and short-range spin fluctuations. These findings enhance the understanding of insulator-to-metal transitions in new settings and open the door to the design of unconventional colossal magnetoresistant materials.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract In this paper we outline the application of decomposition to condensation defects and their fusion rules. Briefly, a condensation defect is obtained by gauging a higher‐form symmetry along a submanifold, and so there is a natural interplay with notions of decomposition, the statement thatd‐dimensional quantum field theories with global ‐form symmetries are equivalent to disjoint unions of other quantum field theories. We will also construct new (sometimes non‐invertible) defects, and compute their fusion products, again utilizing decomposition. An important role will be played in all these analyses by theta angles for gauged higher‐form symmetries, which can be used to select individual universes in a decomposition.more » « less
-
Abstract In large‐eddy simulations, subgrid‐scale (SGS) processes are parameterized as a function of filtered grid‐scale variables. First‐order, algebraic SGS models are based on the eddy‐viscosity assumption, which does not always hold for turbulence. Here we apply supervised deep neural networks (DNNs) to learn SGS stresses from a set of neighboring coarse‐grained velocity from direct numerical simulations of the convective boundary layer at friction Reynolds numbersReτup to 1243 without invoking the eddy‐viscosity assumption. The DNN model was found to produce higher correlation between SGS stresses compared to the Smagorinsky model and the Smagorinsky‐Bardina mixed model in the surface and mixed layers and can be applied to different grid resolutions and various stability conditions ranging from near neutral to very unstable. The DNN model can capture key statistics of turbulence ina posteriori(online) tests when applied to large‐eddy simulations of the atmospheric boundary layer.more » « less
An official website of the United States government
