Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Iron (Fe) is ubiquitous in nature and found as Fe II or Fe III in minerals or as dissolved ions Fe 2+ or Fe 3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of Fe III into natural aquatic systems, organic carboxylic acids efficiently chelate Fe III to form [Fe III –carboxylate] 2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of Fe III –carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of Fe III –citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of ( φ ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe 3+ –citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j 1 ∼ 0.12 min −1 and j 2 ∼ 0.05 min −1 , respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe–organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe–carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of Fe III –citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments.more » « less
-
Stimulated Raman projection tomography is a label-free volumetric chemical imaging technology allowing three-dimensional (3D) reconstruction of chemical distribution in a biological sample from the angle-dependent stimulated Raman scattering projection images. However, the projection image acquisition process requires rotating the sample contained in a capillary glass held by a complicated sample rotation stage, limiting the volumetric imaging speed, and inhibiting the study of living samples. Here, we report a tilt-angle stimulated Raman projection tomography (TSPRT) system which acquires angle-dependent projection images by utilizing tilt-angle beams to image the sample from different azimuth angles sequentially. The TSRPT system, which is free of sample rotation, enables rapid scanning of different views by a tailor-designed four-galvo-mirror scanning system. We present the design of the optical system, the theory, and calibration procedure for chemical tomographic reconstruction. 3D vibrational images of polystyrene beads and C. elegans are demonstrated in the C-H vibrational region.
-
For the past century, dislocations have been understood to be the carriers of plastic deformation in crystalline solids. However, their collective behavior is still poorly understood. Progress in understanding the collective behavior of dislocations has primarily come in one of two modes: the simulation of systems of interacting discrete dislocations and the treatment of density measures of varying complexity that are considered as continuum fields. A summary of contemporary models of continuum dislocation dynamics is presented. These include, in order of complexity, the two-dimensional statistical theory of dislocations, the field dislocation mechanics treating the total Kröner–Nye tensor, vector density approaches that treat geometrically necessary dislocations on each slip system of a crystal, and high-order theories that examine the effect of dislocation curvature and distribution over orientation. Each of theories contain common themes, including statistical closure of the kinetic dislocation transport equations and treatment of dislocation reactions such as junction formation. An emphasis is placed on how these common themes rely on closure relations obtained by analysis of discrete dislocation dynamics experiments. The outlook of these various continuum theories of dislocation motion is then discussed.more » « less
-
Abstract In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.