skip to main content

Search for: All records

Creators/Authors contains: "Lin, Qiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lu, Hua (Ed.)
    SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from eleven patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using x-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic region. CD revealed that A4-153 is helical while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Optical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting. We present optical conductivity-based mid-infrared (mid-IR) biosensors that allow for sensitive and quantitative measurements of low-molecular-weight analytes as well as the enhancement of spectral fingerprints. The sensors employ a hybrid metasurface consisting of monolayer graphene and metallic nano-antennas and combine individual advantages of plasmonic, electronic and spectroscopic approaches. First, the hybrid metasurface sensors can optically detect target molecule-induced carrier doping to graphene, allowing highly sensitive detection of low-molecular-weight analytes despite their small sizes. Second, the resonance shifts caused by changes in graphene optical conductivity is a well-defined function of graphene carrier density, thereby allowing for quantification of the binding of molecules. Third, the sensor performance is highly stable and consistent thanks to its insensitivity to graphene carrier mobility degradation. Finally, the sensors can also act as substrates for surface-enhanced infrared spectroscopy. We demonstrated the measurement of monolayers of sub-nanometer-sized molecules or particles and affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL). We also demonstrated enhanced fingerprinting of minute quantities of glucose and polymer molecules.

    more » « less
  5. Abstract

    A nickel‐catalyzed asymmetric diarylation reaction of vinylarenes enables the preparation of chiral α,α,β‐triarylated ethane scaffolds, which exist in a number of biologically active molecules. The use of reducing conditions with aryl bromides as coupling partners obviates the need for stoichiometric organometallic reagents and tolerates a broad range of functional groups. The application of anN‐oxyl radical as a ligand to a nickel catalyst represents a novel approach to facilitate nickel‐catalyzed cross‐coupling reactions.

    more » « less