skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Wei-Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. na (Ed.)
    Deep clustering is a popular unsupervised technique for feature representation learning. We recently proposed the chunk-based DeepEmoCluster framework for speech emotion recognition (SER) to adopt the concept of deep clustering as a novel semi-supervised learning (SSL) framework, which achieved improved recognition performances over conventional reconstruction-based approaches. However, the vanilla DeepEmoCluster lacks critical sentence- level temporal information that is useful for SER tasks. This study builds upon the DeepEmoCluster framework, creating a powerful SSL approach that leverages temporal information within a sentence. We propose two sentence-level temporal modeling alternatives using either the temporal-net or the triplet loss function, resulting in a novel temporal-enhanced DeepEmoCluster framework to capture essential temporal information. The key contribution to achieving this goal is the proposed sentence-level uniform sampling strategy, which preserves the original temporal order of the data for the clustering process. An extra network module (e.g., gated recurrent unit) is utilized for the temporal-net option to encode temporal information across the data chunks. Alternatively, we can impose additional temporal constraints by using the triplet loss function while training the DeepEmoCluster framework, which does not increase model complexity. Our experimental results based on the MSP-Podcast corpus demonstrate that the proposed temporal-enhanced framework significantly outperforms the vanilla DeepEmoCluster framework and other existing SSL approaches in regression tasks for the emotional attributes arousal, dominance, and valence. The improvements are observed in fully-supervised learning or SSL implementations. Further analyses validate the effectiveness of the proposed temporal modeling, showing (1) high temporal consistency in the cluster assignment, and (2) well-separated emotional patterns in the generated clusters. 
    more » « less
  2. na (Ed.)
    Most existing audio-text emotion recognition studies have focused on the computational modeling aspects, including strategies for fusing the modalities. An area that has received less attention is understanding the role of proper temporal synchronization between the modalities in the model performance. This study presents a transformer-based model designed with a word-chunk concept, which offers an ideal framework to explore different strategies to align text and speech. The approach creates chunks with alternative alignment strategies with different levels of dependency on the underlying lexical boundaries. A key contribution of this study is the multi-scale chunk alignment strategy, which generates random alignments to create the chunks without considering lexical boundaries. For every epoch, the approach generates a different alignment for each sentence, serving as an effective regularization method for temporal dependency. Our experimental results based on the MSP-Podcast corpus indicate that providing precise temporal alignment information to create the audio-text chunks does not improve the performance of the system. The attention mechanisms in the transformer-based approach are able to compensate for imperfect synchronization between the modalities. However, using exact lexical boundaries makes the system highly vulnerable to missing modalities. In contrast, the model trained with the proposed multi-scale chunk regularization strategy using random alignment can significantly increase its robustness against missing data and remain effective, even under a single audio-only emotion recognition task. The code is available at: https://github.com/winston-lin-wei-cheng/MultiScale-Chunk-Regularization 
    more » « less
  3. Chunk-level speech emotion recognition (SER) is a common modeling scheme to obtain better recognition performance than sentence-level formulations. A key open question is the role of lexical boundary information in the process of splitting a sentence into small chunks. Is there any benefit in providing precise lexi- cal boundary information to segment the speech into chunks (e.g., word-level alignments)? This study analyzes the role of lexical boundary information by exploring alternative segmentation strategies for chunk-level SER. We compare six chunk-level segmentation strategies that either consider word-level alignments or traditional time-based segmentation methods by varying the number of chunks and the duration of the chunks. We conduct extensive experiments to evaluate these chunk-level segmentation approaches using multiples corpora, and multiple acoustic feature sets. The results show a minor contribution of the word-level timing boundaries, where centering the chunks around words does not lead to significant performance gains. Instead, the critical factor to effectively segment a sentence into data chunks is to define the number of chunks according to the number of spoken words in the sentence. 
    more » « less
  4. The advancement of Speech Emotion Recognition (SER) is significantly dependent on the quality of emotional speech corpora used for model training. Researchers in the field of SER have developed various corpora by adjusting design parameters to enhance the reliability of the training source. For this study, we focus on exploring communication modes of collection, specifically analyzing spontaneous emotional speech patterns gathered during conversation or monologue. While conversations are acknowledged as effective for eliciting authentic emotional expressions, systematic analyses are necessary to confirm their reliability as a better source of emotional speech data. We investigate this research question from perceptual differences and acoustic variability present in both emotional speeches. Our analyses on multi-lingual corpora show that, first, raters exhibit higher consistency for conversation recordings when evaluating categorical emotions, and second, perceptions and acoustic patterns observed in conversational samples align more closely with expected trends discussed in relevant emotion literature. We further examine the impact of these differences on SER modeling, which shows that we can train a more robust and stable SER model by using conversation data. This work provides comprehensive evidence suggesting that conversation may offer a better source compared to monologue for developing an SER model. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. The emotional content of several databases are annotated with continuous-time (CT) annotations, providing traces with frame-by-frame scores describing the instantaneous value of an emotional attribute. However, having a single score describing the global emotion of a short segment is more convenient for several emotion recognition formulations. A common approach is to derive sentence-level (SL) labels from CT annotations by aggregating the values of the emotional traces across time and annotators. How similar are these aggregated SL labels from labels originally collected at the sentence level? The release of the MSP-Podcast (SL annotations) and MSP-Conversation (CT annotations) corpora provides the resources to explore the validity of aggregating SL labels from CT annotations. There are 2,884 speech segments that belong to both corpora. Using this set, this study (1) compares both types of annotations using statistical metrics, (2) evaluates their inter-evaluator agreements, and (3) explores the effect of these SL labels on speech emotion recognition (SER) tasks. The analysis reveals benefits of using SL labels derived from CT annotations in the estimation of valence. This analysis also provides insights on how the two types of labels differ and how that could affect a model. 
    more » « less
  6. Modeling cross-lingual speech emotion recognition (SER) has become more prevalent because of its diverse applications. Existing studies have mostly focused on technical approaches that adapt the feature, domain, or label across languages, without considering in detail the similarities be- tween the languages. This study focuses on domain adaptation in cross-lingual scenarios using phonetic constraints. This work is framed in a twofold manner. First, we analyze emotion-specific phonetic commonality across languages by identifying common vowels that are useful for SER modeling. Second, we leverage these common vowels as an anchoring mechanism to facilitate cross-lingual SER. We consider American English and Taiwanese Mandarin as a case study to demonstrate the potential of our approach. This work uses two in-the-wild natural emotional speech corpora: MSP-Podcast (American English), and BIIC-Podcast (Taiwanese Mandarin). The proposed unsupervised cross-lingual SER model using these phonetical anchors outperforms the baselines with a 58.64% of unweighted average recall (UAR). 
    more » « less
  7. It is difficult to achieve robust and well-generalized models for tasks involving subjective concepts such as emotion. It is inevitable to deal with noisy labels, given the ambiguous nature of human perception. Methodologies relying on semi-supervised learning (SSL) and curriculum learning have been proposed to enhance the generalization of the models. This study proposes a novel deep mutual information (DeepMI) metric, built with the SSL pre-trained DeepEmoCluster framework to establish the difficulty of samples. The DeepMI metric quantifies the relationship between the acoustic patterns and emotional attributes (e.g., arousal, valence, and dominance). The DeepMI metric provides a better curriculum, achieving state-of-the-art performance that is higher than results obtained with existing curriculum metrics for speech emotion recognition (SER). We evaluate the proposed method with three emotional datasets in matched and mismatched testing conditions. The experimental evaluations systematically show that a model trained with the DeepMI metric not only obtains competitive generalization performances, but also maintains convergence stability. Furthermore, the extracted DeepMI values are highly interpretable, reflecting information ranks of the training samples. 
    more » « less