skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lin, Xinsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 6, 2025
  2. An AIE organic zinc chloride complex scintillator, in which the metal halide serves as X-ray sensitizer for the organic component, is discovered to exhibit a light yield of 13 423 Photon per MeV and a radioluminescence decay lifetime of 5.24 ns.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  3. Free, publicly-accessible full text available February 14, 2025
  4. Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C 8 H 28 N 5 Pb 3 Cl 11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission. 
    more » « less
  5. Abstract

    Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties, such as magnetic and electronic properties, remain significantly under‐explored. Here, we report for the first time the characterization of the magnetic and electronic properties of a 1D OMHH, organic‐copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Owing to the antiferromagnetic coupling between Cu atoms through chloride bridges in 1D [Cu2Cl62−]chains, (C8H22N2)Cu2Cl6is found to exhibit antiferromagnetic ordering with a Néel temperature of 24 K. The two‐terminal (2T) electrical measurement on a (C8H22N2)Cu2Cl6single crystal reveals its insulating nature. This work shows the potential of LD OMHHs as a highly tunable quantum material platform for spintronics.

     
    more » « less
  6. Lanthanide (LnIII) ions were successfully chelated and sensitized with a tripodal ligand. The absolute LnIII-centered emission efficiencies were ~3% for both the europium(III) (EuIII) and terbium (TbIII) complexes and up to 54% for the cerium(III) (CeIII) complex. The differences in emission quantum yields for the early lanthanides (CeIII) and the mid lanthanides (EuIII and TbIII) were attributed to their d–f and f–f nature, respectively. Despite the low quantum yield of the EuIII complex, the combination of the residual ligand fluorescence and the red EuIII emission resulted in a bluish-white material with the Commission Internationale de l’Eclairage (CIE) coordinates (0.258, 0.242). Thus, metal complexes of the ligand could be used in the generation of single-component white-light-emitting materials. 
    more » « less