- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Lin, Yueqian (5)
-
Chen, Yiran (4)
-
Zhang, Jingyang (4)
-
Li, Hai (3)
-
Du, Xuefeng (2)
-
Li, Yixuan (2)
-
Liu, Yudong (2)
-
Liu, Ziwei (2)
-
Sun, Yiyou (2)
-
Wang, Haoqi (2)
-
Yang, Jingkang (2)
-
Zhang, Haoran (2)
-
Zhang, Jianyi (2)
-
Chung, Ming-Yu (1)
-
Fu, Yuzhe (1)
-
Kuo, Martin (1)
-
Ma, Mingyuan (1)
-
Sun, Jingwei (1)
-
Wang, Pengyuan (1)
-
Wang, Pengyun (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 13, 2026
-
Wang, Qinsi; Ye, Hancheng; Chung, Ming-Yu; Liu, Yudong; Lin, Yueqian; Kuo, Martin; Ma, Mingyuan; Zhang, Jianyi; Chen, Yiran (, International Conference on Machine Learning (ICML))Free, publicly-accessible full text available July 13, 2026
-
Zhang, Jingyang; Yang, Jingkang; Wang, Pengyun; Wang, Haoqi; Lin, Yueqian; Zhang, Haoran; Sun, Yiyou; Du, Xuefeng; Li, Yixuan; Liu, Ziwei; et al (, Journal of Data-centric Machine Learning Research)
-
Lin, Yueqian; Zhang, Jingyang; Chen, Yiran; Li, Hai (, The Twelfth International Conference on Learning Representations (ICLR) 2024)Natural Adversarial Examples (NAEs), images arising naturally from the environment and capable of deceiving classifiers, are instrumental in robustly evaluating and identifying vulnerabilities in trained models. In this work, unlike prior works that passively collect NAEs from real images, we propose to actively synthesize NAEs using the state-of-the-art Stable Diffusion. Specifically, our method formulates a controlled optimization process, where we perturb the token embedding that corresponds to a specified class to generate NAEs. This generation process is guided by the gradient of loss from the target classifier, ensuring that the created image closely mimics the ground-truth class yet fools the classifier. Named SD-NAE (Stable Diffusion for Natural Adversarial Examples), our innovative method is effective in producing valid and useful NAEs, which is demonstrated through a meticulously designed experiment. Code is available at https://github.com/linyueqian/SD-NAE.more » « less
-
Zhang, Jingyang; Yang, Jingkang; Wang, Pengyuan; Wang, Haoqi; Lin, Yueqian; Zhang, Haoran; Sun, Yiyou; Du, Xuefeng; Li, Yixuan; Liu, Ziwei; et al (, Journal of Data-centric Machine Learning Research)
An official website of the United States government

Full Text Available