skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Linden, Tim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dark photons that are sufficiently light and/or weakly interacting represent a compelling vision of dark matter. Dark photon decay into three photons, which we call the dark photon trident, can be the dominant channel when the dark photon mass falls below the electron pair threshold and can produce a significant flux of x rays. We use 16 years of data from Interrnational Gamma-Ray Astro Physics Laboratory (INTEGRAL)/Spectrometer of INTEGRAL (SPI) to constrain sub-MeV dark photon decay, producing new worlds-best constraints on the kinetic mixing parameter for dark photon masses between 90 and 1022 keV, and comment on the potential for future x-ray observatories to discover the trident decay process. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. ABSTRACT We use Fermi-LAT data to analyse the faint gamma-ray source located at the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. In the 4FGL-DR3 catalogue, this source is associated with the globular cluster, M54. We investigate the spectral energy distribution and spatial extension of this source, with the goal of testing two hypotheses: (1) the emission is due to millisecond pulsars within M54, or (2) the emission is due to annihilating dark matter from the Sgr halo. For the pulsar interpretation, we consider a two-component model which describes both the lower-energy magnetospheric emission and possible high-energy emission arising from inverse Compton scattering. We find that this source has a point-like morphology at low energies, consistent with magnetospheric emission, and find no evidence for a higher-energy component. For the dark matter interpretation, we find the signal favours a dark matter mass of mχ = 29.6 ± 5.8 GeV and an annihilation cross section of $$\sigma v = (2.1 \pm 0.59) \times 10^{-26} \, \text{cm}^3$$ s−1 for the $$b \bar{b}$$ channel (or mχ = 8.3 ± 3.8 GeV and $$\sigma v = (0.90 \pm 0.25) \times 10^{-26} \, \text{cm}^3$$ s−1 for the τ+τ− channel), when adopting a J-factor of $$J=10^{19.6} \, \text{GeV}^2 \, \text{cm}^{-5}$$. This parameter space is consistent with gamma-ray constraints from other dwarf galaxies and with dark matter interpretations of the Galactic Centre Gamma-Ray Excess. 
    more » « less