skip to main content


Title: On the gamma-ray emission from the core of the Sagittarius dwarf galaxy
ABSTRACT

We use Fermi-LAT data to analyse the faint gamma-ray source located at the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. In the 4FGL-DR3 catalogue, this source is associated with the globular cluster, M54. We investigate the spectral energy distribution and spatial extension of this source, with the goal of testing two hypotheses: (1) the emission is due to millisecond pulsars within M54, or (2) the emission is due to annihilating dark matter from the Sgr halo. For the pulsar interpretation, we consider a two-component model which describes both the lower-energy magnetospheric emission and possible high-energy emission arising from inverse Compton scattering. We find that this source has a point-like morphology at low energies, consistent with magnetospheric emission, and find no evidence for a higher-energy component. For the dark matter interpretation, we find the signal favours a dark matter mass of mχ = 29.6 ± 5.8 GeV and an annihilation cross section of $\sigma v = (2.1 \pm 0.59) \times 10^{-26} \, \text{cm}^3$ s−1 for the $b \bar{b}$ channel (or mχ = 8.3 ± 3.8 GeV and $\sigma v = (0.90 \pm 0.25) \times 10^{-26} \, \text{cm}^3$ s−1 for the τ+τ− channel), when adopting a J-factor of $J=10^{19.6} \, \text{GeV}^2 \, \text{cm}^{-5}$. This parameter space is consistent with gamma-ray constraints from other dwarf galaxies and with dark matter interpretations of the Galactic Centre Gamma-Ray Excess.

 
more » « less
Award ID(s):
1813881
NSF-PAR ID:
10435947
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4574-4585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The Sagittarius Dwarf Spheroidal galaxy (Sgr) is investigated as a target for dark matter (DM) annihilation searches utilizing J-factor distributions calculated directly from a high-resolution hydrodynamic simulation of the infall and tidal disruption of Sgr around the Milky Way. In contrast to past studies, the simulation incorporates DM, stellar and gaseous components for both the Milky Way and the Sgr progenitor galaxy. The simulated distributions account for significant tidal disruption affecting the DM density profile. Our estimate of the J-factor value for Sgr, JSgr = 1.48 × 1010 M$_\odot ^2$ kpc−5 (6.46 × 1016 GeV cm−5), is significantly lower than found in prior studies. This value, while formally a lower limit, is likely close to the true J-factor value for Sgr. It implies a DM cross-section incompatibly large in comparison with existing constraints would be required to attribute recently observed gamma-ray emission from Sgr to DM annihilation. We also calculate a J-factor value using a NFW profile fitted to the simulated DM density distribution to facilitate comparison with past studies. This NFW J-factor value supports the conclusion that most past studies have overestimated the dark matter density of Sgr on small scales. This, together with the fact that the Sgr has recently been shown to emit gamma-rays of astrophysical origin, complicate the use of Sgr in indirect DM detection searches.

     
    more » « less
  2. null (Ed.)
    Abstract Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 $$\hbox {C}_3\hbox {F}_8$$ C 3 F 8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain $$\sigma _{\mathrm{SD}} \lesssim 3 \times 10^{-39} \mathrm {cm}^2$$ σ SD ≲ 3 × 10 - 39 cm 2 ( $$6 \times 10^{-38} \mathrm {cm}^2$$ 6 × 10 - 38 cm 2 ) at $$\gtrsim 90\%$$ ≳ 90 % C.L. for a DM particle of mass 1 TeV annihilating into $$\tau ^+ \tau ^-$$ τ + τ - ( $$b\bar{b}$$ b b ¯ ) with a local density of $$\rho _{\mathrm{DM}} = 0.3~\mathrm {GeV/cm}^3$$ ρ DM = 0.3 GeV / cm 3 . The constraints scale inversely with $$\rho _{\mathrm{DM}}$$ ρ DM and are independent of the DM velocity distribution. 
    more » « less
  3. ABSTRACT Reticulum II (Ret II) is a satellite galaxy of the Milky Way (MW) and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain γ-ray fluxes from Ret II and compare those with expectations from DM. Ret II is not detected in the γ-ray band 25–8000 keV, and we derive a flux limit of ${\lesssim}10^{-8}\, \mathrm{erg\, cm^{-2}\, s^{-1}}$. The previously reported 511 keV line is not seen, and we find a flux limit of ${\lesssim}1.7 \times 10^{-4}\, \mathrm{ph\, cm^{-2}\, s^{-1}}$. We construct spectral models for primordial black hole (PBH) evaporation and annihilation/decay of particle DM, and subsequent annihilation of e+s produced in these processes. We exclude that the totality of DM in Ret II is made of a monochromatic distribution of PBHs of masses ${\lesssim}8 \times 10^{15}\, \mathrm{g}$. Our limits on the velocity-averaged DM annihilation cross section into e+e− are $\langle \sigma v \rangle \lesssim 5 \times 10^{-28} \left(m_{\rm DM} / \mathrm{MeV} \right)^{2.5}\, \mathrm{cm^3\, s^{-1}}$. We conclude that analysing isolated targets in the MeV γ-ray band can set strong bounds on DM properties without multi-year data sets of the entire MW, and encourage follow-up observations of Ret II and other dwarf galaxies. 
    more » « less
  4. ABSTRACT We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a new Keck/Deep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic survey of the Ursa Minor (UMi) dSph. We identify 892 likely members, making this the largest UMi sample with line-of-sight velocity and metallicity measurements. Our Bayesian method detects two distinct chemodynamic populations with high significance (in logarithmic Bayes factor, ln B ∼ 33). The metal-rich ([Fe/H] = −2.05 ± 0.03) population is kinematically colder (radial velocity dispersion of $\sigma _v=4.9_{-1.0}^{+0.8} \, \mathrm{km} \, \mathrm{s}^{-1}$) and more centrally concentrated than the metal-poor ($[{\rm Fe/H}]=-2.29_{-0.06}^{+0.05}$) and kinematically hotter population ($\sigma _v =11.5_{-0.8}^{+0.9}\, \mathrm{km} \, \mathrm{s}^{-1}$). Furthermore, we apply the same analysis to an independent Multiple Mirror Telescope (MMT)/Hectochelle data set and confirm the existence of two chemodynamic populations in UMi. In both data sets, the metal-rich population is significantly flattened (ϵ = 0.75 ± 0.03) and the metal-poor population is closer to spherical ($\epsilon =0.33_{-0.09}^{+0.12}$). Despite the presence of two populations, we are able to robustly estimate the slope of the dynamical mass profile. We found hints for prolate rotation of order ${\sim}2 \, \mathrm{km} \, \mathrm{s}^{-1}$ in the MMT data set, but further observations are required to verify this. The flattened metal-rich population invalidates assumptions built into simple dynamical mass estimators, so we computed new astrophysical dark matter annihilation (J) and decay profiles based on the rounder, hotter metal-poor population and inferred $\log _{10}{(J(0{^{\circ}_{.}}5)/{\rm GeV^{2} \, cm^{-5}})}\approx 19.1$ for the Keck data set. Our results paint a more complex picture of the evolution of UMi than previously discussed. 
    more » « less
  5. Abstract We report on the inclusive $$\text {J}/\psi $$ J / ψ production cross section measured at the CERN Large Hadron Collider in proton–proton collisions at a center-of-mass energy $$\sqrt{s}~=~13$$ s = 13  TeV. The $$\text {J}/\psi $$ J / ψ mesons are reconstructed in the $$\text {e}^{+}\text {e}^{-}$$ e + e - decay channel and the measurements are performed at midrapidity ( $$|y|<0.9$$ | y | < 0.9 ) in the transverse-momentum interval $$0 more » « less