skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lindfors, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. OJ 287 is a bright blazar with century-long observations, and one of the strongest candidates to host a supermassive black hole binary. Its polarisation behaviour between 2015 and 2017 (MJD 57300–58000) contains several interesting events that we re-contextualise in this study. We collected optical photometric and polarimetric data from several telescopes and obtained high-cadence light curves from this period. In the radio band, we collected millimetre-wavelength polarisation data from the AMAPOLA programme. We combined them with existing multi-frequency polarimetric radio results and the results of very long-baseline interferometry imaging with the Global mm-VLBI Array at 86 GHz. In December 2015, an optical flare was seen according to the general relativistic binary black hole model. We suggest that the overall activity near the accretion disk and the jet base during this time may be connected to the onset of a new moving component, K, seen in the jet in March 2017. With the additional optical data, we find a fast polarisation angle rotation of ∼210° coinciding with the December 2015 flare, hinting at a possible link between these events. Based on the 86 GHz images, we calculated a new speed of 0.12 mas/yr for K, which places it inside the core at the time of the 2015 flare. This speed also supports the scenario in which the passage of K through the quasi-stationary feature S1 could have been the trigger for the very high-energy gamma-ray flare of OJ 287 seen in February 2017. With the millimetre-polarisation data, we establish that these bands follow the centimetre-band data but show a difference during the time when K passes through S1. This indicates that the millimetre bands trace substructures of the jet that are still unresolved in the centimetre bands. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Context.Blazars, which include BL Lacs and flat-spectrum radio quasars, represent the brightest persistent extragalactic sources in the high-energy (HE; 10 MeV–100 GeV) and very-high-energy (VHE;E > 100 GeV)γ-ray sky. Due to their almost featureless optical/UV spectra, it is challenging to measure the redshifts of BL Lacs. As a result, about 50% ofγ-ray BL Lacs lack a firm measurement of this property, which is fundamental for population studies, indirect estimates of the extragalactic background light, and fundamental physics probes (e.g., searches for Lorentz-invariance violation or axion-like particles). Aims.This paper is the third in a series of papers aimed at determining the redshift of a sample of blazars selected as prime targets for future observations with the next generation, ground-based VHEγ-ray astronomy observatory, Cherenkov Telescope Array Observatory (CTAO). The accurate determination of the redshift of these objects is an important aid in source selection and planning of future CTAO observations. Methods.Promising targets were selected following a sample selection obtained with Monte Carlo simulations of CTAO observations. The selected targets were expected to be detectable with CTAO in observations of 30 h or less. We performed deep spectroscopic observations of 41 of these blazars using the Keck II, Lick, SALT, GTC, and ESO/VLT telescopes. We carefully searched for spectral lines in the spectra and whenever features of the host galaxy were detected, we attempted to model the properties of the host galaxy. The magnitudes of the targets at the time of the observations were also compared to their long-term light curves. Results.Spectra from 24 objects display spectral features or a high signal-to-noise ratio (S/N). From these, 12 spectroscopic redshifts were determined, ranging from 0.2223 to 0.7018. Furthermore, 1 tentative redshift (0.6622) and 2 redshift lower limits atz > 0.6185 andz > 0.6347 were obtained. The other 9 BL Lacs showed featureless spectra, despite the high S/N (≥100) observations. Our comparisons with long-term optical light curves tentatively suggest that redshift measurements are more straightforward during an optical low state of the active galactic nucleus. Overall, we have determined 37 redshifts and 6 spectroscopic lower limits as part of our programme thus far. 
    more » « less
  3. ABSTRACT Active galactic nuclei (AGNs) make up about 35 per cent of the more than 250 sources detected in very high-energy (VHE) gamma rays to date with the imaging atmospheric Cherenkov telescopes. Apart from four nearby radio galaxies and two AGNs of unknown type, all known VHE AGNs are blazars. Knowledge of the cosmological redshift of gamma-ray blazars is key to enabling the study of their intrinsic emission properties, as the interaction between gamma rays and the extragalactic background light (EBL) results in a spectral softening. Therefore, the redshift determination exercise is crucial to indirectly placing tight constraints on the EBL density, and to studying blazar population evolution across cosmic time. Due to the powerful relativistic jets in blazars, most of their host galaxies’ spectral features are outshined, and dedicated high signal-to-noise (S/N) spectroscopic observations are required. Deep medium- to high-resolution spectroscopy of 33 gamma-ray blazar optical counterparts was performed with the European Southern Observatory, New Technology Telescope, Keck II telescope, Shane 3-metre telescope, and the Southern African Large Telescope. From the sample, spectra from 25 objects display spectral features or are featureless and have high S/N. The other eight objects have low-quality featureless spectra. We systematically searched for absorption and emission features and estimated, when possible, the fractional host galaxy flux in the measured total flux. Our measurements yielded 14 firm spectroscopic redshifts, ranging from 0.0838 to 0.8125, one tentative redshift, and two lower limits: one at $z > 0.382$ and the other at z > 0.629. 
    more » « less
  4. null (Ed.)
    Context. Blazars are the most numerous class of high-energy (HE; E ∼ 50 MeV−100 GeV) and very high-energy (VHE; E ∼ 100 GeV−10 TeV) gamma-ray emitters. Currently, a measured spectroscopic redshift is available for only about 50% of gamma-ray BL Lacertae objects (BL Lacs), mainly due to the difficulty in measuring reliable redshifts from their nearly featureless continuum-dominated optical spectra. The knowledge of the redshift is fundamental for understanding the emission from blazars, for population studies and also for indirect studies of the extragalactic background light and searches for Lorentz invariance violation and axion-like particles using blazars. Aims. This paper is the first in a series of papers that aim to measure the redshift of a sample of blazars likely to be detected with the upcoming Cherenkov Telescope Array (CTA), a ground-based gamma-ray observatory. Methods. Monte Carlo simulations were performed to select those hard spectrum gamma-ray blazars detected with the Fermi -LAT telescope still lacking redshift measurements, but likely to be detected by CTA in 30 hours of observing time or less. Optical observing campaigns involving deep imaging and spectroscopic observations were organised to efficiently constrain their redshifts. We performed deep medium- to high-resolution spectroscopy of 19 blazar optical counterparts with the Keck II, SALT, and ESO NTT telescopes. We searched systematically for spectral features and, when possible, we estimated the contribution of the host galaxy to the total flux. Results. We measured eleven firm spectroscopic redshifts with values ranging from 0.1116 to 0.482, one tentative redshift, three redshift lower limits including one at z ≥ 0.449 and another at z ≥ 0.868. Four BL Lacs show featureless spectra. 
    more » « less
  5. Aims.Mrk 421 was in its most active state around early 2010, which led to the highest TeV gamma-ray flux ever recorded from any active galactic nuclei (AGN). We aim to characterize the multiwavelength behavior during this exceptional year for Mrk 421, and evaluate whether it is consistent with the picture derived with data from other less exceptional years. Methods.We investigated the period from November 5, 2009, (MJD 55140) until July 3, 2010, (MJD 55380) with extensive coverage from very-high-energy (VHE;E > 100 GeV) gamma rays to radio with MAGIC, VERITAS,Fermi-LAT,RXTE,Swift, GASP-WEBT, VLBA, and a variety of additional optical and radio telescopes. We characterized the variability by deriving fractional variabilities as well as power spectral densities (PSDs). In addition, we investigated images of the jet taken with VLBA and the correlation behavior among different energy bands. Results.Mrk 421 was in widely different states of activity throughout the campaign, ranging from a low-emission state to its highest VHE flux ever recorded. We find the strongest variability in X-rays and VHE gamma rays, and PSDs compatible with power-law functions with indices around 1.5. We observe strong correlations between X-rays and VHE gamma rays at zero time lag with varying characteristics depending on the exact energy band. We also report a marginally significant (∼3σ) positive correlation between high-energy (HE;E > 100 MeV) gamma rays and the ultraviolet band. We detected marginally significant (∼3σ) correlations between the HE and VHE gamma rays, and between HE gamma rays and the X-ray, that disappear when the large flare in February 2010 is excluded from the correlation study, hence indicating the exceptionality of this flaring event in comparison with the rest of the campaign. The 2010 violent activity of Mrk 421 also yielded the first ejection of features in the VLBA images of the jet of Mrk 421. Yet the large uncertainties in the ejection times of these unprecedented radio features prevent us from firmly associating them to the specific flares recorded during the 2010 campaign. We also show that the collected multi-instrument data are consistent with a scenario where the emission is dominated by two regions, a compact and extended zone, which could be considered as a simplified implementation of an energy-stratified jet as suggested by recentIXPEobservations. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. ABSTRACT OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source, which includes very high energy (VHE, $$E\gt $$ 100 GeV) $$\gamma$$-ray data taken by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) and H.E.S.S. (High Energy Stereoscopic System) imaging Cherenkov telescopes. The discovery of VHE $$\gamma$$-ray emission happened during a high state of $$\gamma$$-ray activity in July 2016, observed by many instruments from radio to VHE $$\gamma$$-rays. We identify four states of activity of the source, one of which includes VHE $$\gamma$$-ray emission. Variability in the VHE domain is found on daily time-scales. The intrinsic VHE spectrum can be described by a power law with index $$3.27\pm 0.44_{\rm stat}\pm 0.15_{\rm sys}$$ (MAGIC) and $$3.39\pm 0.58_{\rm stat}\pm 0.64_{\rm sys}$$ (H.E.S.S.) in the energy range of 55–300 and 120–500 GeV, respectively. The broadband emission cannot be successfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the data set well and a proton-synchrotron-dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the broad-line region to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be a flat spectrum radio quasar (FSRQ), in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL Lac and FSRQ objects. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  7. The BL Lacertae object VER J0521+211 underwent a notable flaring episode in February 2020. A short-term monitoring campaign, led by the MAGIC (Major Atmospheric Gamma Imaging Cherenkov) collaboration, covering a wide energy range from radio to very high-energy (VHE, 100 GeV <E< 100 TeV) gamma rays was organised to study its evolution. These observations resulted in a consistent detection of the source over six consecutive nights in the VHE gamma-ray domain. Combining these nightly observations with an extensive set of multi-wavelength data made modelling of the blazar’s spectral energy distribution (SED) possible during the flare. This modelling was performed with a focus on two plausible emission mechanisms: (i) a leptonic two-zone synchrotron-self-Compton scenario, and (ii) a lepto-hadronic one-zone scenario. Both models effectively replicated the observed SED from radio to the VHE gamma-ray band. Furthermore, by introducing a set of evolving parameters, both models were successful in reproducing the evolution of the fluxes measured in different bands throughout the observing campaign. Notably, the lepto-hadronic model predicts enhanced photon and neutrino fluxes at ultra-high energies (E> 100 TeV). While the photon component, generated via decay of neutral pions, is not directly observable as it is subject to intense pair production (and therefore extinction) through interactions with the cosmic microwave background photons, neutrino detectors (e.g. IceCube) can probe the predicted neutrino component. Finally, the analysis of the gamma-ray spectra, observed by MAGIC and theFermi-LAT telescopes, yielded a conservative 95% confidence upper limit ofz ≤ 0.244 for the redshift of this blazar. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Context.Blazars exhibit strong variability across the entire electromagnetic spectrum, including periods of high-flux states commonly known as flares. The physical mechanisms in blazar jets responsible for flares remain poorly understood to date. Aims.Our aim is to better understand the emission mechanisms during blazar flares using X-ray polarimetry and broadband observations from the archetypical TeV blazar Mrk 421, which can be studied with higher accuracy than other blazars that are dimmer and/or located farther away. Methods.We studied a flaring activity from December 2023 that was characterized from radio to very high-energy (VHE;E > 0.1 TeV) gamma rays with MAGIC,Fermi-LAT,Swift,XMM-Newton, and several optical and radio telescopes. These observations included, for the first time for a gamma-ray flare of a blazar, simultaneous X-ray polarization measurements with IXPE, in addition to optical and radio polarimetry data. We quantify the variability and correlations among the multi-band flux and polarization measurements, and describe the varying broadband emission within a theoretical scenario constrained by the polarization data. Results.We find substantial variability in both X-rays and VHE gamma rays throughout the campaign, with the highest VHE flux above 0.2 TeV occurring during the IXPE observing window, and exceeding twice the flux of the Crab Nebula. However, the VHE and X-ray spectra are on average softer, and the correlation between these two bands is weaker than those reported in the previous flares of Mrk 421. IXPE reveals an X-ray polarization degree significantly higher than that at radio and optical frequencies, similar to previous results for Mrk 421 and other high synchrotron peaked blazars. Differently to past observations, the X-ray polarization angle varies by ∼100° on timescales of days, and the polarization degree changes by more than a factor of 4. The highest X-ray polarization degree, analyzed in 12 h time intervals, reaches 26 ± 2%, around which an X-ray counter-clockwise hysteresis loop is measured withXMM-Newton. It suggests that the X-ray emission comes from particles close to the high-energy cutoff, hence possibly probing an extreme case of the Turbulent Extreme Multi-Zone model for which the chromatic trend in the polarization may be more pronounced than theoretically predicted. We model the broadband emission with a simplified stratified jet model throughout the flare. The polarization measurements imply an electron distribution in the X-ray emitting region with a very high minimum Lorentz factor ($$ \gamma\prime_{\mathrm{min}}\gtrsim10^4 $$), which is expected in electron-ion plasma, as well as a variation of the emitting region size of up to a factor of 3 during the flaring activity. We find no correlation between the fluxes and the evolution of the model parameters, which indicates a stochastic nature of the underlying physical mechanism that likely explains the lack of a tight X-ray/VHE correlation during this flaring activity. Such behavior would be expected in a highly turbulent electron-ion plasma crossing a shock front. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  9. ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  10. Aims.We have performed the first broadband study of Mrk 421 from radio to TeV gamma rays with simultaneous measurements of the X-ray polarization from IXPE. Methods.The data were collected as part of an extensive multiwavelength campaign carried out between May and June 2022 using MAGIC,Fermi-LAT,NuSTAR,XMM-Newton,Swift, and several optical and radio telescopes to complement IXPE data. Results.During the IXPE exposures, the measured 0.2–1 TeV flux was close to the quiescent state and ranged from 25% to 50% of the Crab Nebula without intra-night variability. Throughout the campaign, the very high-energy (VHE) and X-ray emission are positively correlated at a 4σsignificance level. The IXPE measurements reveal an X-ray polarization degree that is a factor of 2–5 higher than in the optical/radio bands; that implies an energy-stratified jet in which the VHE photons are emitted co-spatially with the X-rays, in the vicinity of a shock front. The June 2022 observations exhibit a rotation of the X-ray polarization angle. Despite no simultaneous VHE coverage being available during a large fraction of the swing, theSwift-XRT monitoring reveals an X-ray flux increase with a clear spectral hardening. This suggests that flares in high synchrotron peaked blazars can be accompanied by a polarization angle rotation, as observed in some flat spectrum radio quasars. Finally, during the polarization angle rotation,NuSTARdata reveal two contiguous spectral hysteresis loops in opposite directions (clockwise and counterclockwise), implying important changes in the particle acceleration efficiency on approximately hour timescales. 
    more » « less