Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This is the third in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field K, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the special linear group. This is more subtle than the results for the general linear and symplectic groups obtained in the first two papers because the arc space of the corresponding affine quotients can be nonreduced.more » « lessFree, publicly-accessible full text available February 1, 2026
-
This is the second in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field , we construct a standard monomial basis for the arc space of the Pfaffian variety over . As an application, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the symplectic group.more » « lessFree, publicly-accessible full text available October 1, 2025
-
The question of when a vertex algebra is a quantization of the arc space of its associated scheme has recently received a lot of attention in both the mathematics and physics literature. This property was first studied by Tomoyuki Arakawa and Anne Moreau (see their paper in the references), and was given the name \lq\lq classical freeness by Jethro van Ekeren and Reimundo Heluani [Comm. Math. Phys. 386 (2021), no. 1, pp. 495-550] in their work on chiral homology. Later, it was extended to vertex superalgebras by Hao Li [Eur. J. Math. 7 (2021), pp. 1689β1728]. In this note, we prove the classical freeness of the simple affine vertex superalgebra for all positive integers satisfying . In particular, it holds for the rational vertex superalgebras for all positive integers .more » « lessFree, publicly-accessible full text available October 1, 2025
-
Abstract We show that the affine vertex superalgebra V^{k}(\mathfrak{osp}_{1|2n})at generic level π embeds in the equivariant π²-algebra of \mathfrak{sp}_{2n}times 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic π, the coset \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V^{k}(\mathfrak{osp}_{1|2n})-modules into V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if π is an admissible level and β is a non-degenerate admissible level for \mathfrak{sp}_{2n}, we show that the simple algebra L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L_{k}(\mathfrak{sp}_{2n})-modules are rigid.more » « lessFree, publicly-accessible full text available August 17, 2025
-
This is the first in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field [Formula: see text], we construct a standard monomial basis for the arc space of the determinantal variety over [Formula: see text]. As an application, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the general linear group.more » « lessFree, publicly-accessible full text available May 1, 2025