skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Standard monomials and invariant theory for arc spaces I: General linear group
This is the first in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field [Formula: see text], we construct a standard monomial basis for the arc space of the determinantal variety over [Formula: see text]. As an application, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the general linear group.  more » « less
Award ID(s):
2001484
PAR ID:
10558460
Author(s) / Creator(s):
;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Communications in Contemporary Mathematics
Volume:
26
Issue:
04
ISSN:
0219-1997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This is the second in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field K K , we construct a standard monomial basis for the arc space of the Pfaffian variety over K K . As an application, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the symplectic group. 
    more » « less
  2. This is the third in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field K, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the special linear group. This is more subtle than the results for the general linear and symplectic groups obtained in the first two papers because the arc space of the corresponding affine quotients can be nonreduced. 
    more » « less
  3. A homology class [Formula: see text] of a complex flag variety [Formula: see text] is called a line degree if the moduli space [Formula: see text] of 0-pointed stable maps to X of degree d is also a flag variety [Formula: see text]. We prove a quantum equals classical formula stating that any n-pointed (equivariant, [Formula: see text]-theoretic, genus zero) Gromov–Witten invariant of line degree on X is equal to a classical intersection number computed on the flag variety [Formula: see text]. We also prove an n-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov–Witten invariants of the variety of complete flags [Formula: see text]. Our formulas make it straightforward to compute the big quantum [Formula: see text]-theory ring [Formula: see text] modulo the ideal [Formula: see text] generated by degrees d larger than line degrees. 
    more » « less
  4. In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so. 
    more » « less
  5. We give examples of (i) a simple theory with a formula (with parameters) which does not fork over [Formula: see text] but has [Formula: see text]-measure 0 for every automorphism invariant Keisler measure [Formula: see text] and (ii) a definable group [Formula: see text] in a simple theory such that [Formula: see text] is not definably amenable, i.e. there is no translation invariant Keisler measure on [Formula: see text]. We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups. 
    more » « less